Bistability in the Ca2+/calmodulin-dependent protein kinase-phosphatase system

被引:125
作者
Zhabotinsky, AM
机构
[1] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA
[2] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0006-3495(00)76469-1
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A mathematical model is presented of autophosphorylation of Ca2+/calmodulin-dependent protein kinase (CaMKII) and its dephosphorylation by a phosphatase. If the total concentration of CaMKII subunits is significantly higher than the phosphatase Michaelis constant, two stable steady states of the CaMKII autophosphorylation can exist in a Ca2+ concentration range from below the resting value of the intracellular [Ca2+] to the threshold concentration for induction of long-term potentiation (LTP). Bistability is a robust phenomenon, it occurs over a wide range of parameters of the model. Ca2+ transients that switch CaMKII from the low-phosphorylated state to the high-phosphorylated one are in the same range of amplitudes and frequencies as the Ca2+ transients that induce LTP. These results show that the CaMKII-phosphatase bistability may play an important role in long-term synaptic modifications. They also suggest a plausible explanation for the very high concentrations of CaMKII found in postsynaptic densities of cerebral neurons.
引用
收藏
页码:2211 / 2221
页数:11
相关论文
共 65 条
[1]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[2]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[3]   A synaptic basis for memory storage in the cerebral cortex [J].
Bear, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13453-13459
[4]   INHIBITORY EFFECT OF A MARINE-SPONGE TOXIN, OKADAIC ACID, ON PROTEIN PHOSPHATASES - SPECIFICITY AND KINETICS [J].
BIALOJAN, C ;
TAKAI, A .
BIOCHEMICAL JOURNAL, 1988, 256 (01) :283-290
[5]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[6]   THE MULTIFUNCTIONAL CALCIUM CALMODULIN-DEPENDENT PROTEIN-KINASE - FROM FORM TO FUNCTION [J].
BRAUN, AP ;
SCHULMAN, H .
ANNUAL REVIEW OF PHYSIOLOGY, 1995, 57 :417-445
[7]  
Cohen P., 1988, CALMODULIN
[8]   Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism [J].
Coomber, CJ .
NEURAL COMPUTATION, 1998, 10 (07) :1653-1678
[9]   Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations [J].
De Koninck, P ;
Schulman, H .
SCIENCE, 1998, 279 (5348) :227-230
[10]   A mechanism for synaptic frequency detection through autophosphorylation of Cam kinase II [J].
Dosemeci, A ;
Albers, RW .
BIOPHYSICAL JOURNAL, 1996, 70 (06) :2493-2501