Interface structure in superhard TiN-SiN nanolaminates and nanocomposites:: Film growth experiments and ab initio calculations

被引:143
作者
Hultman, Lars [1 ]
Bareno, Javier
Flink, Axel
Soderberg, Hans
Larsson, Karin
Petrova, Vania
Oden, Magnus
Greene, J. E.
Petrov, Ivan
机构
[1] Linkoping Univ, Dept Phys Chem & Biol, IFM, SE-58183 Linkoping, Sweden
[2] Univ Illinois, Dept Mat Sci, Urbana, IL 61801 USA
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[4] Lulea Univ Technol, SE-97187 Lulea, Sweden
[5] Uppsala Univ, Angstrom Lab, Dept Chem Mat, SE-75121 Uppsala, Sweden
关键词
D O I
10.1103/PhysRevB.75.155437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanostructured materials-the subject of much of contemporary materials research-are defined by internal interfaces, the nature of which is largely unknown. Yet, the interfaces determine the properties of nanocomposites and nanolaminates. An example is nanocomposites with extreme hardness >= 70-90 GPa, which is of the order of, or higher than, diamond. The Ti-Si-N system, in particular, is attracting attention for the synthesis of such superhard materials. In this case, the nanocomposite structure consists of TiN nanocrystallites encapsulated in a fully percolated SiNx "tissue phase" (1 to 2 monolayers thick) that is assumed to be amorphous. Here, we show that the interfacial tissue phase can be crystalline, and even epitaxial with complex surface reconstructions. Using in situ structural analyses combined with ab initio calculations, we find that SiNx layers grow epitaxially, giving rise to strong interfacial bonding, on both TiN(001) and TiN(111) surfaces. In addition, TiN overlayers grow epitaxially on SiNx/TiN(001) bilayers in nanolaminate structures. These results provide insight into the development of design rules for new nanostructured materials.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO [J].
Ahuja, R ;
Eriksson, O ;
Wills, JM ;
Johansson, B .
PHYSICAL REVIEW B, 1996, 53 (06) :3072-3079
[2]  
AYLWARD A, 1994, SI CHEM DATA
[3]  
BARNETT A, 1993, PHYS THIN FILMS, V17
[4]   Sn-mediated Ge/Ge(001) growth by low-temperature molecular-beam epitaxy: Surface smoothening and enhanced epitaxial thickness [J].
Bratland, KA ;
Foo, YL ;
Spila, T ;
Seo, HS ;
Haasch, RT ;
Desjardins, P ;
Greene, JE .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[5]   Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure [J].
Chen, YH ;
Lee, KW ;
Chiou, WA ;
Chung, YW ;
Keer, LM .
SURFACE & COATINGS TECHNOLOGY, 2001, 146 (146-147) :209-214
[6]   Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films;: evidence for cubic solid solutions and their thermal stability [J].
Flink, A ;
Larsson, T ;
Sjölén, J ;
Karlsson, L ;
Hultman, L .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (5-6) :1535-1542
[7]   Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth:: an ab initio study [J].
Gall, D ;
Kodambaka, S ;
Wall, MA ;
Petrov, I ;
Greene, JE .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (11) :9086-9094
[8]   Study on the superhardness mechanism of Ti-Si-N nandcomposite films:: Influence of the thickness of the Si3N4 interfacial phase [J].
Hu, XP ;
Zhang, HJ ;
Dai, JW ;
Li, GY ;
Gu, MY .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2005, 23 (01) :114-117
[9]   Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices [J].
Kim, IW ;
Li, Q ;
Marks, LD ;
Barnett, SA .
APPLIED PHYSICS LETTERS, 2001, 78 (07) :892-894
[10]   In situ high-temperature scanning tunneling microscopy studies of two-dimensional TiN island coarsening kinetics on TiN(001) [J].
Kodambaka, S ;
Petrova, V ;
Vailionis, A ;
Petrov, I ;
Greene, JE .
SURFACE SCIENCE, 2003, 526 (1-2) :85-96