Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids

被引:216
作者
Xiao, Dong [1 ]
Rajian, Justin Rajesh [1 ]
Cady, Amanda [1 ]
Li, Shengfu [1 ]
Bartsch, Richard A. [1 ]
Quitevis, Edward L. [1 ]
机构
[1] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
关键词
D O I
10.1021/jp066481b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intermolecular spectra of three imidazolium ionic liquids were studied as a function of temperature by the use of optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The ionic liquids comprise the 1,3-pentylmethylimidazolium cation ([C(5)mim](+)), and the anions, bromide (Br-), hexafluorophosphate (PF6-), and bis(trifluoromethanesulfonyl)imide (NTf2-). Whereas the optical Kerr effect (OKE) spectrum of [C(5)mim][NTf2] is temperature-dependent, the OKE spectra of [C(5)mim]Br and [C(5)mim][PF6] are temperature-independent. These results are surprising in light of the fact that the bulk densities of these room temperature ionic liquids (RTILs) are temperature-dependent. The temperature independence of the OKE spectra and the temperature dependence of the bulk density in [C(5)mim]Br and [C(5)mim][PF6] suggest that there are inhomogeneities in the densities of these liquids. The existence of density inhomogeneities is consistent with recent molecular dynamics simulations that show RTILs to be nanostructurally organized with nonpolar regions arising from clustering of the alkyl chains and ionic networks arising from charge ordering of the anions and imidazolium rings of the cations. Differences in the temperature dependences of the OKE spectra are rationalized on the basis of the degree of charge ordering in the polar regions of the RTILs.
引用
收藏
页码:4669 / 4677
页数:9
相关论文
共 51 条
[1]  
Anthony JL, 2005, J PHYS CHEM B, V109, P6366, DOI [10.1021/jp046404l, 10.1021/jp0464041]
[2]   RAYLEIGH SCATTERING - COLLISIONAL MOTIONS IN LIQUIDS [J].
BUCARO, JA ;
LITOVITZ, TA .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (09) :3846-&
[3]   Orientational dynamics of the ionic organic liquid 1-ethyl-3-methylimidazolium nitrate [J].
Cang, H ;
Li, J ;
Fayer, MD .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (24) :13017-13023
[4]  
Carmichael AJ, 2000, ELEC SOC S, V99, P209
[5]   A force field for liquid state simulations on room temperature molten salts:: 1-ethyl-3-methylimidazolium tetrachloroaluminate [J].
de Andrade, J ;
Böes, ES ;
Stassen, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (14) :3546-3548
[6]  
Debye P. J. W., 1929, POLAR MOL
[7]   Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}amide [J].
Deetlefs, Maggel ;
Hardacre, Christopher ;
Nieuwenhuyzen, Mark ;
Padua, Agilio A. H. ;
Sheppard, Oonagh ;
Soper, Alan K. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (24) :12055-12061
[8]   On the structure and dynamics of ionic liquids [J].
Del Pópolo, MG ;
Voth, GA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (05) :1744-1752
[9]   A MOLECULAR QUASI-HYDRODYNAMIC FREE-SPACE MODEL FOR MOLECULAR ROTATIONAL RELAXATION IN LIQUIDS [J].
DOTE, J ;
KIVELSON, D ;
SCHWARTZ, RN .
JOURNAL OF PHYSICAL CHEMISTRY, 1981, 85 (15) :2169-2180
[10]  
Dzyuba SV, 2002, CHEMPHYSCHEM, V3, P161, DOI 10.1002/1439-7641(20020215)3:2<161::AID-CPHC161>3.0.CO