The Haar wavelet transform of a dendrogram

被引:37
作者
Murtagh, Fionn [1 ]
机构
[1] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
关键词
multivariate data analysis; hierarchical clustering; data summarization; data approximation; compression; wavelet transform; computability;
D O I
10.1007/s00357-007-0007-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a new wavelet transform, for use on hierarchies or binary rooted trees. The theoretical framework of this approach to data analysis is described. Case studies are used to further exemplify this approach. A first set of application studies deals with data array smoothing, or filtering. A second set of application studies relates to hierarchical tree condensation. Finally, a third study explores the wavelet decomposition, and the reproducibility of data sets such as text, including a new perspective on the generation or computability of such data objects.
引用
收藏
页码:3 / 32
页数:30
相关论文
共 42 条
[1]  
ALTAISKY MV, 2004, P STEKL I MATH, V245, P34
[2]  
[Anonymous], 2006, Astronomical Image and Data Analysis
[3]  
Aristotle, CATEGORIES
[4]   A wavelet theory for local fields and related groups [J].
Benedetto, JJ ;
Benedetto, RL .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :423-456
[5]  
Benedetto RobertL., 2004, WAVELETS FRAMES OPER, V345, P27
[6]   Approximate query processing using wavelets [J].
Chakrabarti K. ;
Garofalakis M. ;
Rastogi R. ;
Shim K. .
The VLDB Journal, 2001, 10 (2) :199-223
[7]   Taxonomy generation for text segments: A practical Web-based approach [J].
Chuang, SL ;
Chien, LF .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2005, 23 (04) :363-396
[8]  
Debnath Lokenath, 1999, Introduction to Hilbert Spaces with Applications
[9]   Domains for computation in mathematics, physics and exact real arithmetic [J].
Edalat, A .
BULLETIN OF SYMBOLIC LOGIC, 1997, 3 (04) :401-452
[10]  
EDALAT A, 2003, DOMAIN THEORY CONTIN