Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles

被引:317
作者
Zhang, Xing [1 ]
Gu, Hua
Fujii, Motoo
机构
[1] Tsing Hua Univ, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
[2] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 8168580, Japan
[3] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
关键词
nanofluid; thermal conductivity; thermal diffusivity; transient short-hot-wire technique;
D O I
10.1016/j.expthermflusci.2006.06.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effective thermal conductivity and thermal diffusivity of Au/toluene, Al2O3/water, TiO2/water, CuO/water and CNT/water nanofluids have been measured by using the transient short-hot-wire technique. The average diameters of An, Al2O3, TiO2 and CuO spherical particles are 1.65, 20, 40 and 33 urn, respectively. The average length and diameter of CNFs are 10 mu m and 150 nm, respectively. The uncertainty of the present measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancements and can be predicted accurately by the model equation of Hamilton and Crosser for the spherical nanoparticles, and by the unit-cell model equation of Yamada and Ota for carbon nanofibers. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:593 / 599
页数:7
相关论文
共 21 条
[1]  
[Anonymous], ENHANCING THERMAL CO
[2]   Thermal conductivity of suspensions of carbon nanotubes in water [J].
Assael, MJ ;
Chen, CF ;
Metaxa, I ;
Wakeham, WA .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (04) :971-985
[3]   Temperature dependence of thermal conductivity enhancement for nanofluids [J].
Das, SK ;
Putra, N ;
Thiesen, P ;
Roetzel, W .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (04) :567-574
[4]   STANDARD REFERENCE DATA FOR THE THERMAL-CONDUCTIVITY OF LIQUIDS [J].
DECASTRO, CAN ;
LI, SFY ;
NAGASHIMA, A ;
TRENGOVE, RD ;
WAKEHAM, WA .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1986, 15 (03) :1073-1086
[5]   Simultaneous measurements of thermal conductivity and thermal diffusivity of liquids under microgravity conditions [J].
Fujii, M ;
Zhang, X ;
Imaishi, N ;
Fujiwara, S ;
Sakamoto, T .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1997, 18 (02) :327-339
[6]   THERMAL CONDUCTIVITY OF HETEROGENEOUS 2-COMPONENT SYSTEMS [J].
HAMILTON, RL ;
CROSSER, OK .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1962, 1 (03) :187-&
[7]   Nanofluids for thermal transport [J].
Keblinski, Pawel ;
Eastman, Jeffrey A. ;
Cahill, David G. .
MATERIALS TODAY, 2005, 8 (06) :36-44
[8]  
KUMADA T, 1975, T JPN SOC MECH ENG, V41, P1209
[9]   Model for heat conduction in nanofluids [J].
Kumar, DH ;
Patel, HE ;
Kumar, VRR ;
Sundararajan, T ;
Pradeep, T ;
Das, SK .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :144301-1
[10]   Measuring thermal conductivity of fluids containing oxide nanoparticles [J].
Lee, S ;
Choi, SUS ;
Li, S ;
Eastman, JA .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :280-289