Type V collagen controls the initiation of collagen fibril assembly

被引:370
作者
Wenstrup, RJ
Florer, JB
Brunskill, EW
Bell, SM
Chervoneva, I
Birk, DE
机构
[1] Childrens Hosp Res Fdn, Div Human Genet, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Internal Med, Cincinnati, OH 45267 USA
[3] Thomas Jefferson Univ, Dept Anat & Med, Philadelphia, PA 19107 USA
[4] Thomas Jefferson Univ, Dept Anat & Cell Biol, Philadelphia, PA 19107 USA
关键词
D O I
10.1074/jbc.M409622200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vertebrate collagen fibrils are heterotypically composed of a quantitatively major and minor fibril collagen. In non-cartilaginous tissues, type I collagen accounts for the majority of the collagen mass, and collagen type V, the functions of which are poorly understood, is a minor component. Type V collagen has been implicated in the regulation of fibril diameter, and we reported recently preliminary evidence that type V collagen is required for collagen fibril nucleation (Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C., and Birk, D. E. ( 2004) J. Cell. Biochem. 92, 113 - 124). The purpose of this study was to define the roles of type V collagen in the regulation of collagen fibrillogenesis and matrix assembly. Mouse embryos completely deficient in pro-alpha1(V) chains were created by homologous recombination. The col5a1-/- animals die in early embryogenesis, at approximately embryonic day 10. The type V collagen-deficient mice demonstrate a virtual lack of collagen fibril formation. In contrast, the col5a1+/- animals are viable. The reduced type V collagen content is associated with a 50% reduction in fibril number and dermal collagen content. In addition, relatively normal, cylindrical fibrils are assembled with a second population of large, structurally abnormal collagen fibrils. The structural properties of the abnormal matrix are decreased relative to the wild type control animals. These data indicate a central role for the evolutionary, ancient type V collagen in the regulation of fibrillogenesis. The complete dependence of fibril formation on type V collagen is indicative of the critical role of the latter in early fibril initiation. In addition, this fibril collagen is important in the determination of fibril structure and matrix organization.
引用
收藏
页码:53331 / 53337
页数:7
相关论文
共 43 条
[1]   INVITRO FORMATION OF HYBRID FIBRILS OF TYPE-V COLLAGEN AND TYPE-I COLLAGEN - LIMITED GROWTH OF TYPE-I COLLAGEN INTO THICK FIBRILS BY TYPE-V COLLAGEN [J].
ADACHI, E ;
HAYASHI, T .
CONNECTIVE TISSUE RESEARCH, 1986, 14 (04) :257-266
[2]   Mice deficient in small leucine-rich proteoglycans:: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases [J].
Ameye, L ;
Young, MF .
GLYCOBIOLOGY, 2002, 12 (09) :107R-116R
[3]  
Beighton P, 1998, AM J MED GENET, V77, P31, DOI 10.1002/(SICI)1096-8628(19980428)77:1<31::AID-AJMG8>3.0.CO
[4]  
2-O
[5]   The loss of ventral ectoderm identity correlates with the inability to form an AER in the legless hindlimb bud [J].
Bell, SM ;
Schreiner, CM ;
Scott, WJ .
MECHANISMS OF DEVELOPMENT, 1998, 74 (1-2) :41-50
[6]  
BERG RA, 1982, METHOD ENZYMOL, V82, P372
[7]   COLLAGEN TYPE-I AND TYPE-V ARE PRESENT IN THE SAME FIBRIL IN THE AVIAN CORNEAL STROMA [J].
BIRK, DE ;
FITCH, JM ;
BABIARZ, JP ;
LINSENMAYER, TF .
JOURNAL OF CELL BIOLOGY, 1988, 106 (03) :999-1008
[8]   COLLAGEN FIBRILLOGENESIS IN-SITU - FIBRIL SEGMENTS UNDERGO POSTDEPOSITIONAL MODIFICATIONS RESULTING IN LINEAR AND LATERAL GROWTH DURING MATRIX DEVELOPMENT [J].
BIRK, DE ;
NURMINSKAYA, MV ;
ZYCBAND, EI .
DEVELOPMENTAL DYNAMICS, 1995, 202 (03) :229-243
[9]  
Birk DE, 1997, DEV DYNAM, V208, P291
[10]   Characterization of collagen fibril segments from chicken embryo cornea, dermis and tendon [J].
Birk, DE ;
Hahn, RA ;
Linsenmayer, CY ;
Zycband, EI .
MATRIX BIOLOGY, 1996, 15 (02) :111-118