Spreading gossip in social networks

被引:113
作者
Lind, Pedro G.
da Silva, Luciano R.
Andrade, Jose S., Jr.
Herrmann, Hans J.
机构
[1] Univ Stuttgart, Inst Computat Phys, D-7000 Stuttgart, Germany
[2] Ctr Fis Teorica Computat, P-1649 Lisbon, Portugal
[3] Univ Fed Rio Grande do Norte, Dept Fis Teor Expt, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Ceara, Dept Fis, BR-60451 Fortaleza, Ceara, Brazil
[5] ETH, HIF E12, CH-8093 Zurich, Switzerland
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.036117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[3]   Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs [J].
Andrade, JS ;
Herrmann, HJ ;
Andrade, RFS ;
da Silva, LR .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Chains of affection: The structure of adolescent romantic and sexual networks [J].
Bearman, PS ;
Moody, J ;
Stovel, K .
AMERICAN JOURNAL OF SOCIOLOGY, 2004, 110 (01) :44-91
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]   Nonequilibrium phase transition in a model for social influence [J].
Castellano, C ;
Marsili, M ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (16) :3536-3539
[8]   Diffusion-annihilation processes in complex networks -: art. no. 056104 [J].
Catanzaro, M ;
Boguñá, M ;
Pastor-Satorras, R .
PHYSICAL REVIEW E, 2005, 71 (05)
[9]   Epidemics in small world networks [J].
da Gama, MMT ;
Nunes, A .
EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2) :205-208
[10]   Universal behavior in a generalized model of contagion [J].
Dodds, PS ;
Watts, DJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :218701-1