Automated image registration: II. Intersubject validation of linear and nonlinear models

被引:371
作者
Woods, RP
Grafton, ST
Watson, JDG
Sicotte, NL
Mazziotta, JC
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Neurol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Sch Med, Div Brain Mapping, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Sch Med, Dept Pharmacol, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Sch Med, Dept Radiol, Los Angeles, CA 90095 USA
[5] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA 30322 USA
[6] Emory Univ, Sch Med, Dept Nucl Med, Atlanta, GA 30322 USA
[7] Univ Sydney, Dept Med, Sydney, NSW 2006, Australia
[8] Royal Prince Alfred Hosp, Neuropsychol Unit, Camperdown, NSW 2050, Australia
关键词
image registration; magnetic resonance imaging; emission computed tomography (PET); brain mapping; image warping;
D O I
10.1097/00004728-199801000-00028
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Our goal was to validate linear and nonlinear intersubject image registration using an automated method (AIR 3.0) based on voxel intensity. Method: PET and MRI data from 22 normal subjects were registered to corresponding averaged PET or MRI brain atlases using several specific linear and nonlinear spatial transformation models with an automated algorithm. Validation was based on anatomically defined landmarks. Results: Automated registration produced results that were superior to a manual nine parameter variant of the Talairach registration method. Increasing the degrees of freedom in the spatial transformation model improved the accuracy of automated intersubject registration. Conclusion: Linear or nonlinear automated intersubject registration based on voxel intensities is computationally practical and produces more accurate alignment of homologous landmarks than manual nine parameter Talairach registration. Nonlinear models provide better registration than linear models but are slower.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 18 条
  • [1] [Anonymous], 1998, J COMPUT ASSIST TOMO
  • [2] [Anonymous], 1967, ATLAS ANATOMIE STERE
  • [3] AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE
    COLLINS, DL
    NEELIN, P
    PETERS, TM
    EVANS, AC
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) : 192 - 205
  • [4] Automatic 3-D model-based neuroanatomical segmentation
    Collins, DL
    Holmes, CJ
    Peters, TM
    Evans, AC
    [J]. HUMAN BRAIN MAPPING, 1995, 3 (03) : 190 - 208
  • [5] A STEREOTACTIC METHOD OF ANATOMICAL LOCALIZATION FOR POSITRON EMISSION TOMOGRAPHY
    FOX, PT
    PERLMUTTER, JS
    RAICHLE, ME
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1985, 9 (01) : 141 - 153
  • [6] PLASTIC TRANSFORMATION OF PET IMAGES
    FRISTON, KJ
    FRITH, CD
    LIDDLE, PF
    FRACKOWIAK, RSJ
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1991, 15 (04) : 634 - 639
  • [7] ELASTICALLY DEFORMING 3D ATLAS TO MATCH ANATOMICAL BRAIN IMAGES
    GEE, JC
    REIVICH, M
    BAJCSY, R
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1993, 17 (02) : 225 - 236
  • [8] Hippocampal MR imaging morphometry by means of general pattern matching
    Haller, JW
    Christensen, GE
    Joshi, SC
    Newcomer, JW
    Miller, MI
    Csernansky, JG
    Vannier, MW
    [J]. RADIOLOGY, 1996, 199 (03) : 787 - 791
  • [9] RIEMANNIAN CENTER OF MASS AND MOLLIFIER SMOOTHING
    KARCHER, H
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (05) : 509 - 541
  • [10] NEURAL-NETWORK MAPPING FOR NONLINEAR STEREOTAXIC NORMALIZATION OF BRAIN MR IMAGES
    KOSUGI, Y
    SASE, M
    KUWATANI, H
    KINOSHITA, N
    MOMOSE, T
    NISHIKAWA, J
    WATANABE, T
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1993, 17 (03) : 455 - 460