A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions

被引:46
作者
Pan, Shaohua [2 ]
Chen, Jein-Shan [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
Second-order cone; Complementarity; B-subdifferential; Semismooth; Newton's method; CONVERGENCE ANALYSIS; ALGORITHMS;
D O I
10.1007/s10589-008-9166-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a detailed investigation for the properties of a one-parametric class of SOC complementarity functions, which include the globally Lipschitz continuity, strong semismoothness, and the characterization of their B-subdifferential. Moreover, for the merit functions induced by them for the second-order cone complementarity problem (SOCCP), we provide a condition for each stationary point to be a solution of the SOCCP and establish the boundedness of their level sets, by exploiting Cartesian P-properties. We also propose a semismooth Newton type method based on the reformulation of the nonsmooth system of equations involving the class of SOC complementarity functions. The global and superlinear convergence results are obtained, and among others, the superlinear convergence is established under strict complementarity. Preliminary numerical results are reported for DIMACS second-order cone programs, which confirm the favorable theoretical properties of the method.
引用
收藏
页码:59 / 88
页数:30
相关论文
共 26 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]  
Alizadeh Farid., 2000, HDB SEMIDEFINITE PRO, P195
[3]   On implementing a primal-dual interior-point method for conic quadratic optimization [J].
Andersen, ED ;
Roos, C ;
Terlaky, T .
MATHEMATICAL PROGRAMMING, 2003, 95 (02) :249-277
[4]   An unconstrained smooth minimization reformulation of the second-order cone complementarity problem [J].
Chen, JS ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :293-327
[5]  
CHEN JS, 2008, COMPUT OPTI IN PRESS
[6]   Cartesian P-property and its applications to the semidefinite linear complementarity problem [J].
Chen, X ;
Qi, HD .
MATHEMATICAL PROGRAMMING, 2006, 106 (01) :177-201
[7]   Complementarity functions and numerical experiments on some smoothing newton methods for second-order-cone complementarity problems [J].
Chen, XD ;
Sun, D ;
Sun, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) :39-56
[8]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[9]  
Faraut J., 1994, Oxford Math. Monogr.