Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster

被引:53
作者
Norry, FM
Dahlgaard, J
Loeschcke, V
机构
[1] Aarhus Univ, Dept Ecol & Genet, DK-8000 Aarhus C, Denmark
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, RA-1428 Buenos Aires, DF, Argentina
关键词
dominance; Drosophila; heat-knockdown resistance; heat-shock proteins; heat-stress resistance; QTL; thermal adaptation;
D O I
10.1111/j.1365-294X.2004.02323.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.
引用
收藏
页码:3585 / 3594
页数:10
相关论文
共 64 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster [J].
Anderson, AR ;
Collinge, JE ;
Hoffmann, AA ;
Kellett, M ;
McKechnie, SW .
HEREDITY, 2003, 90 (02) :195-202
[3]  
Basten C.J., 1999, QTL Cartographer (Version 1.13)
[4]   MULTIPLE INDUCERS OF THE DROSOPHILA HEAT-SHOCK LOCUS-93D (HSR-OMEGA) - INDUCER-SPECIFIC PATTERNS OF THE 3 TRANSCRIPTS [J].
BENDENA, WG ;
GARBE, JC ;
TRAVERSE, KL ;
LAKHOTIA, SC ;
PARDUE, ML .
JOURNAL OF CELL BIOLOGY, 1989, 108 (06) :2017-2028
[5]  
Bettencourt BR, 2002, EVOLUTION, V56, P1796, DOI 10.1111/j.0014-3820.2002.tb00193.x
[6]   Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster. [J].
Bettencourt, BR ;
Feder, ME ;
Cavicchi, S .
EVOLUTION, 1999, 53 (02) :484-492
[7]  
Bubli OA, 1998, EVOLUTION, V52, P619, DOI 10.1111/j.1558-5646.1998.tb01661.x
[8]  
CAVICCHI S, 1995, EVOLUTION, V49, P676, DOI 10.1111/j.1558-5646.1995.tb02304.x
[9]   Microsatellite markers for interspecific mapping of Drosophila simulans and D-sechellia [J].
Colson, I ;
Macdonald, SJ ;
Goldstein, DB .
MOLECULAR ECOLOGY, 1999, 8 (11) :1951-1955
[10]   Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster [J].
Dahlgaard, J ;
Loeschcke, V ;
Michalak, P ;
Justesen, J .
FUNCTIONAL ECOLOGY, 1998, 12 (05) :786-793