Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores

被引:276
作者
Wang, Y
Tang, ZY
Correa-Duarte, MA
Pastoriza-Santos, I
Giersig, M
Kotov, NA [1 ]
Liz-Marzán, LM
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biochem Engn, Ann Arbor, MI 48109 USA
[4] Univ Vigo, Dept Quim Fis, Vigo 36310, Spain
[5] CAESAR, D-53175 Bonn, Germany
关键词
D O I
10.1021/jp048948t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CdSe and CdSe@CdS semiconductor nanocrystals have been synthesized in aqueous solutions, using sodium citrate as a stabilizer. Although initially these quantum dots display photoluminescence with very low quantum yields, upon prolonged illumination with visible light, enhancements up to 5000% have been measured. This leads to aqueous quantum dots with high luminescence, which can have important implications in biological and other applications. A distinct correlation between the photocorrosion process and the photoactivation process is observed. The primary reason for luminescence enhancement is considered to be the smoothing of the CdSe core surface. Importantly, even stronger activation was observed in silica- and CdS-coated nanocolloids where the CdSe core was expected to be shielded from photocorrosion. Preferential adsorption of oxygen molecules in the porous silicate shell accelerates the photocorrosion process. In CdS-coated particles, incomplete coating of the original particles is postulated, which is accompanied by the reforming of the CdS coat because of ionic diffusion at the interface on the newly opening areas with smoother surfaces.
引用
收藏
页码:15461 / 15469
页数:9
相关论文
共 56 条
[1]   Photoemission study of size selected InP nanocrystals:: the relationship between luminescence yield and surface structure [J].
Adam, S ;
McGinley, C ;
Möller, T ;
Talapin, DV ;
Borchert, H ;
Haase, M ;
Weller, H .
EUROPEAN PHYSICAL JOURNAL D, 2003, 24 (1-3) :373-376
[2]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[3]   Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+.: 1.: Surface passivation and Mn2+ concentration [J].
Bol, AA ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (42) :10197-10202
[4]   Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+.: 2.: Enhancement by UV irradiation [J].
Bol, AA ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (42) :10203-10209
[5]   Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS [J].
Borchert, H ;
Talapin, DV ;
Gaponik, N ;
McGinley, C ;
Adam, S ;
Lobo, A ;
Möller, T ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (36) :9662-9668
[6]  
BOWENKATARI JE, 1994, J PHYS CHEM-US, V98, P4109
[7]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[8]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[9]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[10]   Photo-activated luminescence of CdSe quantum dot monolayers [J].
Cordero, SR ;
Carson, PJ ;
Estabrook, RA ;
Strouse, GF ;
Buratto, SK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12137-12142