The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela

被引:484
作者
Anderson, Robert P. [1 ,2 ]
Raza, Ali [1 ]
机构
[1] CUNY City Coll, Dept Biol, New York, NY 10031 USA
[2] Amer Museum Nat Hist, Div Vertebrate Zool Mammal, New York, NY 10024 USA
基金
美国国家科学基金会;
关键词
Background sampling; distributional modelling; Maxent; Nephelomys; niche evolution; niche modelling; overfitting; pseudoabsences; South America; transferability; ORYZOMYS-ALBIGULARIS RODENTIA; SAMPLE SELECTION BIAS; SPINY POCKET MICE; ENVIRONMENTAL NICHE; CONSERVATION PRIORITIES; COMPETITIVE-EXCLUSION; CLIMATE-CHANGE; PERFORMANCE; SPECIATION; TRANSFERABILITY;
D O I
10.1111/j.1365-2699.2010.02290.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim Various techniques model a species' niche and potential distribution by comparing the environmental conditions of occurrence localities with those of the overall study region (via a background or pseudoabsence sample). Here, we examine how changes in the extent of the study region (ignored or under-appreciated in most studies) affect models of two rodents, Nephelomys caracolus and Nephelomys meridensis. Location North-central South America. Methods We used Maxent to model the species' potential distributions via two methods of defining the study region. In Method 1 (typical of most studies to date), we calibrated the model in a large study region that included the ranges of both species. In Method 2, we calibrated the model using a smaller study region surrounding the localities of the focal species, and then applied it to the larger region. Because the study region of Method 1 is likely to include areas of suitable conditions that are unoccupied because of dispersal limitations and/or biotic interactions, this approach is prone to overfitting to conditions found near the occupied localities. In contrast, Method 2 should avoid such problems but may require further assumptions ('clamping' in Maxent) to make predictions for areas with environmental conditions beyond those found in the smaller study region. For each method, we calculated several measures of geographic interpredictivity between predictions for the species (cross-species AUC, cross-species omission rate, and proportional geographic overlap). Results Compared with Method 1, Method 2 revealed a larger predicted area for each species, less concentrated around known localities (especially for N. caracolus). It also led to higher cross-species AUC values, lower cross-species omission rates and higher proportions of geographic overlap. Clamping was minimal and occurred primarily in regions unlikely to be suitable. Main conclusions Method 2 led to more realistic predictions and higher estimates of niche conservatism. Conclusions reached by many studies depend on the selection of an appropriate study region. Although detailed information regarding dispersal limitations and/or biotic interactions will typically be difficult to obtain, consideration of coarse distributional patterns, topography and vegetational zones often should permit delimitation of a much more reasonable study region than the extremely large ones currently in common use.
引用
收藏
页码:1378 / 1393
页数:16
相关论文
共 69 条
[1]   CYTOGENETICS AND KARYOSYSTEMATICS OF ORYZOMYS ALBIGULARIS (RODENTIA, CRICETIDAE) FROM VENEZUELA [J].
AGUILERA, M ;
PEREZZAPATA, A ;
MARTINO, A .
CYTOGENETICS AND CELL GENETICS, 1995, 69 (1-2) :44-49
[2]  
Anderson Robert P., 2009, Bulletin of the American Museum of Natural History, V331, P33
[3]  
Anderson RP, 2003, AM MUS NOVIT, P1
[4]   Real vs. artefactual absences in species distributions:: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela [J].
Anderson, RP .
JOURNAL OF BIOGEOGRAPHY, 2003, 30 (04) :591-605
[5]   Geographical distributions of spiny pocket mice in South America:: insights from predictive models [J].
Anderson, RP ;
Gómez-Laverde, M ;
Peterson, AT .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2002, 11 (02) :131-141
[6]   Modeling species' geographic distributions for preliminary conservation assessments:: an implementation with the spiny pocket mice (Heteromys) of Ecuador [J].
Anderson, RP ;
Martínez-Meyer, E .
BIOLOGICAL CONSERVATION, 2004, 116 (02) :167-179
[7]   Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice [J].
Anderson, RP ;
Peterson, AT ;
Gómez-Laverde, M .
OIKOS, 2002, 98 (01) :3-16
[8]   Validation of species-climate impact models under climate change [J].
Araújo, MB ;
Pearson, RG ;
Thuiller, W ;
Erhard, M .
GLOBAL CHANGE BIOLOGY, 2005, 11 (09) :1504-1513
[9]   How does climate change affect biodiversity? [J].
Araujo, Miguel B. ;
Rahbek, Carsten .
SCIENCE, 2006, 313 (5792) :1396-1397
[10]   Five (or so) challenges for species distribution modelling [J].
Araujo, Miguel B. ;
Guisan, Antoine .
JOURNAL OF BIOGEOGRAPHY, 2006, 33 (10) :1677-1688