A robust hierarchical basis preconditioner on general meshes

被引:16
作者
Stevenson, R [1 ]
机构
[1] Univ Nijmegen, Dept Math, NL-6500 GL Nijmegen, Netherlands
关键词
D O I
10.1007/s002110050313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a multi-level direct sum space decomposition of general, possibly locally refined linear or multi-linear finite element spaces. The resulting additive Schwarz preconditioner is optimal for symmetric second order elliptic problems. Moreover, it turns out to be robust with respect to coefficient jumps over edges in the coarsest mesh, perturbations with positive zeroth order terms, and, after a further decomposition of the spaces, also with respect to anisotropy along the grid lines, Important for an efficient implementation is that stable bases of the subspaces defining our decomposition, consisting of functions having small supports can be easily constructed.
引用
收藏
页码:269 / 303
页数:35
相关论文
共 25 条
[1]   A BASIC NORM EQUIVALENCE FOR THE THEORY OF MULTILEVEL METHODS [J].
BORNEMANN, F ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1993, 64 (04) :455-476
[2]  
Bornemann F. A., 1992, Impact of Computing in Science and Engineering, V4, P1, DOI 10.1016/0899-8248(92)90015-Z
[3]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[4]   MULTILEVEL PRECONDITIONING [J].
DAHMEN, W ;
KUNOTH, A .
NUMERISCHE MATHEMATIK, 1992, 63 (03) :315-344
[5]  
DAHMEN W, 1994, IN PRESS J FOURIER A
[6]  
DAHMEN W, 1994, ADV COMPUTATIONAL MA, P1
[7]  
DAHMEN W, IN PRESS P INT C WAV
[8]   ON THE ABSTRACT THEORY OF ADDITIVE AND MULTIPLICATIVE SCHWARZ ALGORITHMS [J].
GRIEBEL, M ;
OSWALD, P .
NUMERISCHE MATHEMATIK, 1995, 70 (02) :163-180
[9]  
Griebels M, 1995, ADV COMPUT MATH, V4, P171, DOI DOI 10.1007/BF02123478
[10]   THE FREQUENCY DECOMPOSITION MULTIGRID METHOD .2. CONVERGENCE ANALYSIS BASED ON THE ADDITIVE SCHWARZ METHOD [J].
HACKBUSCH, W .
NUMERISCHE MATHEMATIK, 1992, 63 (04) :433-453