Inhibition of vascular smooth muscle cell growth by inhibition of fibronectin matrix assembly

被引:75
作者
Mercurius, KO [1 ]
Morla, AO [1 ]
机构
[1] Univ Chicago, Dept Pathol, Comm Canc Biol, Chicago, IL 60637 USA
关键词
extracellular matrix; integrin; laminin; Matrigel;
D O I
10.1161/01.RES.82.5.548
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The regulation of vascular smooth muscle cell (VSMC) proliferation by the fibronectin matrix was tested by treating human umbilical artery smooth muscle cells (HUASMCs) with a recombinant fragment of fibronectin (protein III1-C) that has previously been shown to modulate fibronectin matrix assembly. III1-C inhibited HUASMC proliferation by 75% to 90%, The inhibition of growth was time dependent III1-C had no effect on DNA synthesis after 0 to 5 hours of treatment but did have an effect at 24 hours and beyond. III1-C did not stimulate apoptosis in these cells, indicating that the inhibition of proliferation was not due to an induction of programmed cell death. The effects of III1-C on cell growth were only specific for normal diploid smooth muscle cells. III1-C had no effect on the proliferation of IMR-90 fibroblasts, endothelial cells, NIH 3T3 cells, or the rat aortic smooth muscle cell line A7r5. However, III1-C did inhibit proliferation by primary rat aortic smooth muscle cells. An analysis of HUASMC fibronectin receptor (integrin alpha 5 beta 1) distribution revealed that III1-C did not inhibit: alpha 5 beta 1 localization to local contacts. Moreover, III1-C had no effect on the relative expression levels of seven different integrin subunits on HUASMCs. However, III1-C did inhibit fibronectin matrix assembly by rat aortic smooth muscle cells, HUASMCs, A7r5 cells, IMR-90 cells, and endothelial cells. An analysis of fibronectin synthesis indicated that the inhibition of fibronectin matrix assembly by III1-C was not due solely to a decrease in fibronectin synthesis. Finally, treatment of HUASMCs with anti-fibronectin monoclonal antibody LS (which is known to inhibit fibronectin matrix assembly) also decreased the rate of HUASMC DNA synthesis. These results demonstrate that III1-C inhibits VSMC proliferation and suggest that this effect may be mediated by the inhibition of fibronectin matrix assembly.
引用
收藏
页码:548 / 556
页数:9
相关论文
共 57 条
[1]  
AGUIRRE KM, 1994, J BIOL CHEM, V269, P27863
[2]   ANALYSIS OF FIBRONECTIN RECEPTOR FUNCTION WITH MONOCLONAL-ANTIBODIES - ROLES IN CELL-ADHESION, MIGRATION, MATRIX ASSEMBLY, AND CYTOSKELETAL ORGANIZATION [J].
AKIYAMA, SK ;
YAMADA, SS ;
CHEN, WT ;
YAMADA, KM .
JOURNAL OF CELL BIOLOGY, 1989, 109 (02) :863-875
[3]   The extracellular matrix as a cell cycle control element in atherosclerosis and restenosis [J].
Assoian, RK ;
Marcantonio, EE .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 98 (11) :2436-2439
[4]   Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression [J].
Assoian, RK ;
Zhu, XY .
CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (01) :93-98
[5]   Anchorage-dependent cell cycle progression [J].
Assoian, RK .
JOURNAL OF CELL BIOLOGY, 1997, 136 (01) :1-4
[6]   FOCAL ADHESIONS - TRANSMEMBRANE JUNCTIONS BETWEEN THE EXTRACELLULAR-MATRIX AND THE CYTOSKELETON [J].
BURRIDGE, K ;
FATH, K ;
KELLY, T ;
NUCKOLLS, G ;
TURNER, C .
ANNUAL REVIEW OF CELL BIOLOGY, 1988, 4 :487-525
[7]   RECENT ADVANCES IN MOLECULAR PATHOLOGY - SMOOTH-MUSCLE PHENOTYPIC CHANGES IN ARTERIAL-WALL HOMEOSTASIS - IMPLICATIONS FOR THE PATHOGENESIS OF ATHEROSCLEROSIS [J].
CAMPBELL, GR ;
CAMPBELL, JH .
EXPERIMENTAL AND MOLECULAR PATHOLOGY, 1985, 42 (02) :139-162
[8]   SMOOTH-MUSCLE CELL IN CULTURE [J].
CHAMLEYCAMPBELL, J ;
CAMPBELL, GR ;
ROSS, R .
PHYSIOLOGICAL REVIEWS, 1979, 59 (01) :1-61
[9]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[10]   MONOCLONAL-ANTIBODY TO FIBRONECTIN WHICH INHIBITS EXTRACELLULAR-MATRIX ASSEMBLY [J].
CHERNOUSOV, MA ;
FAERMAN, AI ;
FRID, MG ;
PRINTSEVA, OY ;
KOTELIANSKY, VE .
FEBS LETTERS, 1987, 217 (01) :124-128