Promoter occupancy is a major determinant of chromatin remodeling enzyme requirements

被引:45
作者
Dhasarathy, A [1 ]
Kladde, MP [1 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
关键词
D O I
10.1128/MCB.25.7.2698-2707.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin creates transcriptional barriers that are overcome by coactivator activities such as histone acetylation by Gcn5 and ATP-dependent chromatin remodeling by SWI/SNF. Factors defining the differential coactivator requirements in the transactivation of various promoters remain elusive. Induction of the Saccharomyces cerevisiae PHOS promoter does not require Gcn5 or SWI/SNF under fully inducing conditions of no phosphate. We show that PHO5 activation is highly dependent on both coactivators at intermediate phosphate concentrations, conditions that reduce the nuclear concentration of the Pho4 transactivator and severely diminish its association with PHO5 in the absence of Gcn5 or SWI/SNF. Conversely, physiological increases in Pho4 nuclear concentration and binding at PHO5 suppress the need for both Gcn5 and SWI/SNF, suggesting that coactivator redundancy is established at high Pho4 binding site occupancy. Consistent with this, we demonstrate, using chromatin immunoprecipitation, that Gcn5 and SWI/SNF are directly recruited to PHO5 and other strongly transcribed promoters, including GAL1-10, RPL19B, RPS22B, PYK1, and EFT2, which do not require either coactivator for expression. These results show that activator concentration and binding site occupancy play crucial roles in defining the extent to which transcription requires individual chromatin remodeling enzymes. In addition, Gcn5 and SWI/SNF associate with many more genomic targets than previously appreciated.
引用
收藏
页码:2698 / 2707
页数:10
相关论文
共 68 条
[1]   Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PH05 and PH08 genes [J].
Adkins, MW ;
Howar, SR ;
Tyler, JK .
MOLECULAR CELL, 2004, 14 (05) :657-666
[2]   Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter [J].
Agalioti, T ;
Lomvardas, S ;
Parekh, B ;
Yie, JM ;
Maniatis, T ;
Thanos, D .
CELL, 2000, 103 (04) :667-678
[3]   NUCLEASE HYPERSENSITIVE REGIONS WITH ADJACENT POSITIONED NUCLEOSOMES MARK THE GENE BOUNDARIES OF THE PHO5/PHO3 LOCUS IN YEAST [J].
ALMER, A ;
HORZ, W .
EMBO JOURNAL, 1986, 5 (10) :2681-2687
[4]   Multiple mechanistically distinct functions of SAGA at the PH05 promoter [J].
Barbaric, S ;
Reinke, H ;
Hörz, W .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (10) :3468-3476
[5]   Increasing the rate of chromatin remodeling and gene activation -: a novel role for the histone acetyltransferase Gcn5 [J].
Barbaric, S ;
Walker, J ;
Schmid, A ;
Svejstrup, JQ ;
Hörz, W .
EMBO JOURNAL, 2001, 20 (17) :4944-4951
[6]   SAGA is an essential in vivo target of the yeast acidic activator Gal4p [J].
Bhaumik, SR ;
Green, MR .
GENES & DEVELOPMENT, 2001, 15 (15) :1935-1945
[7]   Continuous and widespread roles for the Swi-Snf complex in transcription [J].
Biggar, SR ;
Crabtree, GR .
EMBO JOURNAL, 1999, 18 (08) :2254-2264
[8]   Nucleosomes unfold completely at a transcriptionally active promoter [J].
Boeger, H ;
Griesenbeck, J ;
Strattan, JS ;
Kornberg, RD .
MOLECULAR CELL, 2003, 11 (06) :1587-1598
[9]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[10]   A YEAST ARS-BINDING PROTEIN ACTIVATES TRANSCRIPTION SYNERGISTICALLY IN COMBINATION WITH OTHER WEAK ACTIVATING FACTORS [J].
BUCHMAN, AR ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (03) :887-897