Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion

被引:51
作者
Assisi, CG [1 ]
Jirsa, VK
Kelso, JAS
机构
[1] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
[2] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA
关键词
D O I
10.1103/PhysRevLett.94.018106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Networks with nonidentical nodes and global coupling may display a large variety of dynamic behaviors, such as phase clustered solutions, synchrony, and oscillator death. The network dynamics is a function of the parameter dispersion and may be captured by conventional mean field approaches if it is close to the completely synchronous state. In this Letter we introduce a novel method based on a mode decomposition in the parameter space, which provides a low-dimensional network description for more complex dynamic behaviors and captures the mean field approach as a special case. The example of globally coupled Fitzhugh-Nagumo neurons is discussed.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Modulation of network behaviour by changes in variance in interneuronal properties [J].
Aradi, I ;
Soltesz, I .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 538 (01) :227-251
[2]   OSCILLATIONS AND LOW FIRING RATES IN ASSOCIATIVE MEMORY NEURAL NETWORKS [J].
BUHMANN, J .
PHYSICAL REVIEW A, 1989, 40 (07) :4145-4148
[3]   Coherent regimes of globally coupled dynamical systems [J].
De Monte, S ;
d'Ovidio, F ;
Mosekilde, E .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[4]   Dynamic predictions: Oscillations and synchrony in top-down processing [J].
Engel, AK ;
Fries, P ;
Singer, W .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (10) :704-716
[5]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[6]   CLUSTERING IN GLOBALLY COUPLED PHASE OSCILLATORS [J].
GOLOMB, D ;
HANSEL, D ;
SHRAIMAN, B ;
SOMPOLINSKY, H .
PHYSICAL REVIEW A, 1992, 45 (06) :3516-3530
[7]  
HAKEN H, 1996, SPRINGER SERIES SYNE, V67
[8]  
KELSO AK, 1995, NAT REV NEUROSCI
[9]  
Kelso J. A. S., 1995, DYNAMIC PATTERNS SEL
[10]  
Kuramoto Y, 2003, CHEM OSCILLATIONS WA