Non-homologous end-joining factors of Saccharomyces cerevisiae

被引:124
作者
Dudásová, Z [1 ]
Dudás, A [1 ]
Chovanec, M [1 ]
机构
[1] Slovak Acad Sci, Canc Res Inst, Mol Genet Lab, Bratislava 83391 37, Slovakia
关键词
non-homologous end-joining; Saccharomyces cerevisiae; Yku70/80; Mrel; 1/Rad5O/Xrs2; Lig4/Lif1; Nej1;
D O I
10.1016/j.femsre.2004.06.001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
DNA double-strand breaks (DSB) are considered to be a severe form of DNA damage, because if left unrepaired, they can cause a cell death and, if misrepaired, they can lead to genomic instability and, ultimately, the development of cancer in multicellular organisms. The budding yeast Saccharomyces cerevisiae repairs DSB primarily by homologous recombination (HR), despite the presence of the KU70, KU80, DNA ligase IV and XRCC4 homologues, essential factors of the mammalian non-homologous end-joining (NHEJ) machinery. S. cerevisiae, however, lacks clear DNA-PKcs and ARTEMIS homologues, two important additional components of mammalian NHEJ. On the other hand, S. cerevisiae is endowed with a regulatory NHEJ component, Nej1, which has not yet been found in other organisms. Furthermore, there is evidence in budding yeast for a requirement for the Mre11/Rad50/Xrs2 complex for NHEJ, which does not appear to be the case either in Schizosaccharomyces pombe or in mammals. Here, we comprehensively describe the functions of all the S. cerevisiae NHEJ components identified so far and present current knowledge about the NHEJ process in this organism. In addition, this review depicts S. cerevisiae as a powerful model system for investigating the utilization of either NHEJ or HR in DSB repair. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:581 / 601
页数:21
相关论文
共 237 条
[1]  
ALANI E, 1989, GENETICS, V122, P47
[2]   ANALYSIS OF WILD-TYPE AND RAD50 MUTANTS OF YEAST SUGGESTS AN INTIMATE-RELATIONSHIP BETWEEN MEIOTIC CHROMOSOME SYNAPSIS AND RECOMBINATION [J].
ALANI, E ;
PADMORE, R ;
KLECKNER, N .
CELL, 1990, 61 (03) :419-436
[3]   Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice [J].
Araki, R ;
Fujimori, A ;
Hamatani, K ;
Mita, K ;
Saito, T ;
Mori, M ;
Fukumura, R ;
Morimyo, M ;
Muto, M ;
Itoh, M ;
Tatsumi, K ;
Abe, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2438-2443
[4]   Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system [J].
Aravind, L ;
Koonin, EV .
GENOME RESEARCH, 2001, 11 (08) :1365-1374
[5]   Studies on the mode of Ku interaction with DNA [J].
Arosio, D ;
Cui, S ;
Ortega, C ;
Chovanec, M ;
Di Marco, S ;
Baldini, G ;
Falaschi, A ;
Vindigni, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :9741-9748
[6]   Yeast cell-type regulation of DNA repair [J].
Äström, SU ;
Okamura, SM ;
Rine, J .
NATURE, 1999, 397 (6717) :310-310
[7]   Enzymes and reactions at the eukaryotic DNA replication fork [J].
Bambara, RA ;
Murante, RS ;
Henricksen, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :4647-4650
[8]   DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae [J].
Barnes, G ;
Rio, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (03) :867-872
[9]   The frameshift infidelity of human DNA polymerase λ -: Implications for function [J].
Bebenek, K ;
Garcia-Diaz, M ;
Blanco, L ;
Kunkel, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (36) :34685-34690
[10]   The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini [J].
Bertuch, AA ;
Lundblad, V .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (22) :8202-8215