A model "rebound" mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways, and their reactivity patterns

被引:384
作者
Ogliaro, F
Harris, N
Cohen, S
Filatov, M
de Visser, SP
Shaik, S [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Organ Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Lise Meitner Minerva Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel
关键词
D O I
10.1021/ja991878x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A two-state rebound mechanism of alkane hydroxylation by a model active species of the enzyme cytochrome P450 is studied using density functional theoretic calculations. Theory corroborates Groves's rebound mechanism (Groves, J. T. J. Chem. Educ. 1985, 62, 928), with a key difference,namely that in the two-state rebound the reactivity and product distribution result from the interplay of two reactive states of the active ferryl-oxene (Por(+.)FeO) species of the enzyme: one state is low-spin (doublet) and the other high-spin (quartet). Transition-state structures, intermediates, and product complexes are identified for the two states. The bond activation in either one of the two states involves a hydrogen abstraction-like transition structure. However, while in the high-spin state there forms a radical that has a significant barrier for rebound, in the low-spin state the rebound is virtually barrierless. Even though one cannot ignore incursion of a small amount of radicals in the low-spin state, it is clear that the radical has a significant lifetime mainly on the high-spin surface. The results are used to gain insight into puzzling experimental data which emerge from studies of ultrafast radical clocks (e.g., Toy, P. H.; Newcomb, M.; Hollenberg, P. F., J. Am. Chem. Sec. 1998, 120, 7719), vis a vis the nature the transition state, deduced from kinetic isotope effect measurements (Manchester, J. I.; Dinnocenzo, J. P.; Higgins, L. A.; Jones, J. P. J. Am. Chem. Sec. 1997, 119, 5069) and stereochemical scrambling patterns (Groves, J. T.; McClusky, G. A.; White, R. E.; Goon, M. J. Biochem. Biophys. Res. Commun. 1978, 81, 154). Understanding the electronic structure of the various species leads to a predictive structure-reactivity picture, based on the two-state reactivity scenario (Shaik, S.; Filatov, M.; Schroder, D.; Schwarz, H. Chem. fur. J. 1998, 4, 193). The model makes it possible to predict the dependence of the relative rates of the two states, and of the corresponding steps as a function of the nature of the alkane, the resulting alkyl radical, and the binding capability of the thiolate proximal ligand of the active species.
引用
收藏
页码:8977 / 8989
页数:13
相关论文
共 113 条
[1]  
Aissaoui H, 1998, ANGEW CHEM INT EDIT, V37, P2998, DOI 10.1002/(SICI)1521-3773(19981116)37:21<2998::AID-ANIE2998>3.0.CO
[2]  
2-P
[3]   Local density functional study of oxoiron(IV) porphyrin complexes and their one-electron oxidized derivatives. Axial ligand effects [J].
Antony, J ;
Grodzicki, M ;
Trautwein, AX .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (14) :2692-2701
[4]   CYTOCHROME P450-CATALYZED HYDROXYLATION OF HYDROCARBONS - KINETIC DEUTERIUM-ISOTOPE EFFECTS FOR THE HYDROXYLATION OF AN ULTRAFAST RADICAL CLOCK [J].
ATKINSON, JK ;
HOLLENBERG, PF ;
INGOLD, KU ;
JOHNSON, CC ;
LETADIC, MH ;
NEWCOMB, M ;
PUTT, DA .
BIOCHEMISTRY, 1994, 33 (35) :10630-10637
[5]   CYTOCHROME-P450 HYDROXYLATION OF HYDROCARBONS - VARIATION IN THE RATE OF OXYGEN REBOUND USING CYCLOPROPYL RADICAL CLOCKS INCLUDING 2 NEW ULTRAFAST PROBES [J].
ATKINSON, JK ;
INGOLD, KU .
BIOCHEMISTRY, 1993, 32 (35) :9209-9214
[6]   Experimental and theoretical study of the effect of active-site constrained substrate motion on the magnitude of the observed intramolecular isotope effect for the P450 101 catalyzed benzylic hydroxylation of isomeric xylenes and 4,4′-dimethylbiphenyl [J].
Audergon, C ;
Iyer, KR ;
Jones, JP ;
Darbyshire, JF ;
Trager, WF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (01) :41-47
[7]  
AUGUSTO O, 1982, J BIOL CHEM, V257, P1288
[8]   AN ALGORITHM FOR THE LOCATION OF BRANCHING POINTS ON REACTION PATHS [J].
BAKER, J ;
GILL, PMW .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1988, 9 (05) :465-475
[9]   INVESTIGATIONS OF THE RESONANCE RAMAN EXCITATION PROFILES OF CYTOCHROME-P450CAM [J].
BANGCHAROENPAURPONG, O ;
CHAMPION, PM ;
MARTINIS, SA ;
SLIGAR, SG .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (08) :4273-4284
[10]   Mechanism of the methane → methanol conversion reaction catalyzed by methane monooxygenase:: A density functional study [J].
Basch, H ;
Mogi, K ;
Musaev, DG ;
Morokuma, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (31) :7249-7256