Locally free actions on Lorentz manifolds

被引:7
作者
Adams, S [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Topological Space; Topological Group; Free Action; Lorentz Manifold; Connected Lorentz Manifold;
D O I
10.1007/PL00001626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a topological group G acts on a topological space M, then we say that the action is orbit nonproper provided that, for some m(0) is an element of M; the orbit map g --> gm(0) : G --> M is nonproper. In this paper we characterize the connected, simply connected Lie groups that admit a locally free, orbit nonproper action by isometries of a connected Lorentz manifold. We also consider a number of variants on this question.
引用
收藏
页码:453 / 515
页数:63
相关论文
共 13 条
[1]  
ADAMS S, IN PRESS P C BESS RO
[2]  
ADAMS S, 1999, INDUCTION GEOMETRIC
[3]  
ADAMS S, IN PRESS GAFA
[4]  
[Anonymous], INTRO LECT AUTOMORPH
[5]  
Hochschild G.P., 1981, BASIC THEORY ALGEBRA
[6]  
HUMPRHEYS JE, 1972, INTRO LIE ALGEBRAS R
[7]  
HUMPRHEYS JE, 1981, LINEAR ALGEBRAIC GRO
[8]   SOME REMARKS ON NILPOTENT ORBITS [J].
KAC, VG .
JOURNAL OF ALGEBRA, 1980, 64 (01) :190-213
[9]   Noncompact simple automorphism groups of Lorentz manifolds and other geometric manifolds [J].
Kowalsky, N .
ANNALS OF MATHEMATICS, 1996, 144 (03) :611-640
[10]   DENSE LIE GROUP HOMOMORPHISMS [J].
POGUNTKE, D .
JOURNAL OF ALGEBRA, 1994, 169 (02) :625-647