Rigorous derivation of Korteweg-De Vries-type systems from a general class of nonlinear hyperbolic systems

被引:24
作者
Ben Youssef, W
Colin, T
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
[2] CNRS UMR 5466, F-33405 Talence, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 04期
关键词
hyperbolic systems; systems of KdV-type; Euler-Poisson; water-waves; asymptotic expansion; long-wave approximation;
D O I
10.1051/m2an:2000107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper: we study the long wave approximation for quasilinear symmetric hyperbolic systems. Using the technics developed by Joly-Metivier-Rauch for nonlinear geometrical optics, we prove that under suitable assumptions the long wave limit is described by KdV-type systems. The error estimate if the system is coupled appears to be better. We apply formally our technics to Euler equations with free surface and Euler-Poisson systems. This leads to new systems of KdV-type.
引用
收藏
页码:873 / 911
页数:39
相关论文
共 23 条
[1]  
Alinhac S., 1991, Operateurs pseudo-differentiels et theoreme de Nash-Moser
[2]  
ATO T, 1966, GRUNDLEHREN MATH WIS, V132
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]  
BENYOUSSEF W, 1999, CONSERVATIVE HIGH OR
[5]  
BENYOUSSEF W, 1999, GLOBAL CAUCHY PROBLE
[6]  
BONA J, COMMUNICATION
[7]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[8]   A Boussinesq system for two-way propagation of nonlinear dispersive waves [J].
Bona, JL ;
Chen, M .
PHYSICA D, 1998, 116 (1-2) :191-224
[9]  
BONA JL, 1997, LECT NOTES AUSTIN
[10]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209