Non-linear rate-equilibrium free energy relationships and Hammond behavior in protein folding

被引:46
作者
Sánchez, IE [1 ]
Kiefhaber, T [1 ]
机构
[1] Univ Basel, Biozentrum, Dept Biophys Chem, CH-4056 Basel, Switzerland
关键词
protein folding kinetics; transition state; rate-equilibrium relationships; Hammond postulate; cross-interaction parameters; folding intermediates;
D O I
10.1016/S0301-4622(02)00294-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Non-linear rate-equilibrium relationships upon mutation or changes in solvent conditions are frequently observed in protein folding reactions and are usually interpreted in terms of Hammond behavior. Here we first give a general overview over the concept of transition state movements in chemical reactions and discuss its application to protein folding. We then show examples for genuine Hammond behavior and for apparent transition state movements caused by other effects like changes in the rate-limiting step of the folding reaction or ground state effects, i.e. structural changes in either the native state or the unfolded state. These examples show that apparent transition state movements can easily be mistaken for Hamniond behavior. We describe experimental tests using self- and cross-interaction parameters to distinguish between structural changes in a single transition state following Hammond behavior and apparent transition state movements caused by other effects. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:397 / 407
页数:11
相关论文
共 59 条
[1]   Apparent two-state tendamistat folding is a sequential process along a defined route [J].
Bachmann, A ;
Kiefhaber, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 306 (02) :375-386
[2]   LOW-TEMPERATURE UNFOLDING OF A MUTANT OF PHAGE-T4 LYSOZYME .2. KINETIC INVESTIGATIONS [J].
CHEN, BL ;
BAASE, WA ;
SCHELLMAN, JA .
BIOCHEMISTRY, 1989, 28 (02) :691-699
[3]   Calculation of ensembles of structures representing the unfolded state of an SH3 domain [J].
Choy, WY ;
Forman-Kay, JD .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (05) :1011-1032
[4]   Movement of the intermediate and rate determining transition state of barnase on the energy landscape with changing temperature [J].
Dalby, PA ;
Oliveberg, M ;
Fersht, AR .
BIOCHEMISTRY, 1998, 37 (13) :4674-4679
[5]   Some applications of the transition state method to the calculation of reaction velocities, especially in solution. [J].
Evans, MG ;
Polanyi, M .
TRANSACTIONS OF THE FARADAY SOCIETY, 1935, 31 (01) :0875-0893
[6]   HYDROPHOBIC CLUSTERING IN NONNATIVE STATES OF A PROTEIN - INTERPRETATION OF CHEMICAL-SHIFTS IN NMR-SPECTRA OF DENATURED STATES OF LYSOZYME [J].
EVANS, PA ;
TOPPING, KD ;
WOOLFSON, DN ;
DOBSON, CM .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1991, 9 (04) :248-266
[7]   The activated complex in chemical reactions [J].
Eyring, H .
JOURNAL OF CHEMICAL PHYSICS, 1935, 3 (02) :107-115
[8]   USE AND MISUSE OF HAMMOND POSTULATE [J].
FARCASIU, D .
JOURNAL OF CHEMICAL EDUCATION, 1975, 52 (02) :76-79
[9]   SINGLE VERSUS PARALLEL PATHWAYS OF PROTEIN-FOLDING AND FRACTIONAL FORMATION OF STRUCTURE IN THE TRANSITION-STATE [J].
FERSHT, AR ;
ITZHAKI, LS ;
ELMASRY, N ;
MATTHEWS, JM ;
OTZEN, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (22) :10426-10429
[10]   THE FOLDING OF AN ENZYME .1. THEORY OF PROTEIN ENGINEERING ANALYSIS OF STABILITY AND PATHWAY OF PROTEIN FOLDING [J].
FERSHT, AR ;
MATOUSCHEK, A ;
SERRANO, L .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (03) :771-782