Different responses of tobacco antioxidant enzymes to light and chilling stress

被引:181
作者
Gechev, T
Willekens, H
Van Montagu, M
Inzé, D
Van Camp, W
Toneva, V
Minkov, I
机构
[1] Paisij Hilendarski Univ Plovdiv, Dept Plant Physiol & Mol Biol, BG-4000 Plovdiv, Bulgaria
[2] Univ Groningen, Researchsch GBB, Dept Mol Biol Plants, NL-9751 NN Haren, Netherlands
[3] CropDesign NV, B-9052 Zwijnaarde, Belgium
[4] State Univ Ghent VIB, Dept Plant Syst Biol, B-9000 Ghent, Belgium
关键词
antioxidant enzymes; chilling stress; glutathione peroxidase; light stress;
D O I
10.1078/0176-1617-00753
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effect of elevated light treatment (25 degreesC, PPFD 360 mumol m(-2) sec(-1)) or chilling temperatures combined with elevated light (5 degreesC, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photo-oxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities, Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degreesC and 5 degreesC. Measurements at 5 degreesC revealed a 3-fold reduction in catalase activity, compared with that measured at 25degreesC, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5 fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degreesC. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.
引用
收藏
页码:509 / 515
页数:7
相关论文
共 48 条
[1]   INDUCTION OF 33-KD AND 60-KD PEROXIDASES DURING ETHYLENE-INDUCED SENESCENCE OF CUCUMBER COTYLEDONS [J].
ABELES, FB ;
DUNN, LJ ;
MORGENS, P ;
CALLAHAN, A ;
DINTERMAN, RE ;
SCHMIDT, J .
PLANT PHYSIOLOGY, 1988, 87 (03) :609-615
[2]   CHANGES IN ISOZYME PROFILES OF CATALASE, PEROXIDASE, AND GLUTATHIONE-REDUCTASE DURING ACCLIMATION TO CHILLING IN MESOCOTYLS OF MAIZE SEEDLINGS [J].
ANDERSON, MD ;
PRASAD, TK ;
STEWART, CR .
PLANT PHYSIOLOGY, 1995, 109 (04) :1247-1257
[3]   A STRESS-ASSOCIATED CITRUS PROTEIN IS A DISTINCT PLANT PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE-PEROXIDASE [J].
BEEORTZAHAR, T ;
BENHAYYIM, G ;
HOLLAND, D ;
FALTIN, Z ;
ESHDAT, Y .
FEBS LETTERS, 1995, 366 (2-3) :151-155
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   DIFFERENTIAL TEMPERATURE SENSITIVITY OF PEA SUPEROXIDE DISMUTASES [J].
BURKE, JJ ;
OLIVER, MJ .
PLANT PHYSIOLOGY, 1992, 100 (03) :1595-1598
[6]   MAGNESIUM-DEFICIENCY AND HIGH LIGHT-INTENSITY ENHANCE ACTIVITIES OF SUPEROXIDE-DISMUTASE, ASCORBATE PEROXIDASE, AND GLUTATHIONE-REDUCTASE IN BEAN-LEAVES [J].
CAKMAK, I ;
MARSCHNER, H .
PLANT PHYSIOLOGY, 1992, 98 (04) :1222-1227
[7]   Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco [J].
Chamnongpol, S ;
Willekens, H ;
Moeder, W ;
Langebartels, C ;
Sandermann, H ;
Van Montagu, A ;
Inzé, D ;
Van Camp, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5818-5823
[8]   Dual action of the active oxygen species during plant stress responses [J].
Dat, J ;
Vandenabeele, S ;
Vranová, E ;
Van Montagu, M ;
Inzé, D ;
Van Breusegem, F .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (05) :779-795
[9]   The activated oxygen role of peroxisomes in senescence [J].
del Río, LA ;
Pastori, GM ;
Palma, JM ;
Sandalio, LM ;
Sevilla, F ;
Corpas, FJ ;
Jiménez, A ;
López-Huertas, E ;
Hernández, JA .
PLANT PHYSIOLOGY, 1998, 116 (04) :1195-1200
[10]   ISOZYMES OF SUPEROXIDE-DISMUTASE IN MITOCHONDRIA AND PEROXISOMES ISOLATED FROM PETALS OF CARNATION (DIANTHUS-CARYOPHYLLUS) DURING SENESCENCE [J].
DROILLARD, MJ ;
PAULIN, A .
PLANT PHYSIOLOGY, 1990, 94 (03) :1187-1192