A multiscale image representation using hierarchical (BV, L2) decompositions

被引:143
作者
Tadmor, E [1 ]
Nezzar, S
Vese, L
机构
[1] Univ Maryland, Ctr Sci Computat & Math Modeling, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
natural images; multiscale expansion; total variation; localization; adaptivity;
D O I
10.1137/030600448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new multiscale image decomposition which offers a hierarchical, adaptive representation for the different features in general images. The starting point is a variational decomposition of an image, f=u(0)+v(0), where [u(0), v(0)] is the minimizer of a J-functional, J(f, lambda(0);X,Y)=inf(u+v=f) {parallel touparallel to(X)+lambda(0)parallel tovparallel to(Y)(p)}. Such minimizers are standard tools for image manipulations (e.g., denoising, deblurring, compression); see, for example, [M. Mumford and J. Shah, Proceedings of the IEEE Computer Vision Pattern Recognition Conference, San Francisco, CA, 1985] and [L. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259-268]. Here, u(0) should capture "essential features" of f which are to be separated from the spurious components absorbed by v(0), and lambda(0) is a fixed threshold which dictates separation of scales. To proceed, we iterate the refinement step [u(j+1), v(j+1)]=arginf J(v(j), lambda(0)2(j)), leading to the hierarchical decomposition, f=Sigma(j=0)(k)u(j)+v(k). We focus our attention on the particular case of (X,Y)=(BV,L-2) decomposition. The resulting hierarchical decomposition, fsimilar toSigma(j) u(j), is essentially nonlinear. The questions of convergence, energy decomposition, localization, and adaptivity are discussed. The decomposition is constructed by numerical solution of successive Euler-Lagrange equations. Numerical results illustrate applications of the new decomposition to synthetic and real images. Both greyscale and color images are considered.
引用
收藏
页码:554 / 579
页数:26
相关论文
共 27 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[4]   Minimizing total variation flow [J].
Andreau, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11) :867-872
[5]   A variational method in image recovery [J].
Aubert, G ;
Vese, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1948-1979
[6]  
Aubert G, 2002, Mathematical problems in image processing: Partial differential equations and the calculus of variations
[7]  
AVERBUCH AZ, 1998, P INT C IM PROC ICIP, V2, P292
[8]  
Bennett C., 1988, INTERPOLATION OPERAT
[9]  
Bergh J., 1976, INTERPOLATION SPACES
[10]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188