Solitons and diffusive modes in the noiseless Burgers equation: Stability analysis

被引:22
作者
Fogedby, HC [1 ]
机构
[1] Univ Aarhus, Inst Phys & Astron, DK-8000 Aarhus C, Denmark
[2] NORDITA, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1103/PhysRevE.57.2331
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The noiseless Burgers equation in one spatial dimension is analyzed from the point of view of a diffusive evolution equation in terms. of nonlinear soliton modes and linear diffusive modes. The transient evolution of the profile is interpreted as a gas of right hand solitons connected by ramp solutions with superposed linear diffusive modes. This picture is supported by a linear stability analysis of the soliton mode. The spectrum and phase shift of the diffusive modes are determined. In the presence of the soliton the diffusive modes develop a gap in the spectrum, and are phase shifted in accordance with Levinson's theorem. The spectrum also exhibits a zero-frequency translation or Goldstone mode associated with the broken translational symmetry.
引用
收藏
页码:2331 / 2337
页数:7
相关论文
共 41 条
[1]   ON THE MULTIFRACTAL PROPERTIES OF THE ENERGY-DISSIPATION DERIVED FROM TURBULENCE DATA [J].
AURELL, E ;
FRISCH, U ;
LUTSKO, J ;
VERGASSOLA, M .
JOURNAL OF FLUID MECHANICS, 1992, 238 :467-486
[2]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[3]  
BALKOVSKY E, UNPUB
[4]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[5]   SCALING AND INTERMITTENCY IN BURGERS TURBULENCE [J].
BOUCHAUD, JP ;
MEZARD, M ;
PARISI, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3656-3674
[6]  
BOUCHAUD JP, UNPUB
[7]  
Burgers J M, 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[8]  
Burgers JM, 1929, P K AKAD WET-AMSTERD, V32, P414
[9]  
Burgers JM, 1929, P K AKAD WET-AMSTERD, V32, P818
[10]  
Burgers JM, 1929, P K AKAD WET-AMSTERD, V32, P643