Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole

被引:243
作者
Loqué, D
Ludewig, U
Yuan, LX
von Wirén, N
机构
[1] Univ Hohenheim, Inst Pflanzenernahrung, D-70593 Stuttgart, Germany
[2] Univ Tubingen, Zentrum Molekularbiol Pflanzen, D-72076 Tubingen, Germany
关键词
D O I
10.1104/pp.104.051268
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
While membrane transporters mediating ammonium uptake across the plasma membrane have been well described at the molecular level, little is known about compartmentation and cellular export of ammonium. (The term ammonium is used to denote both NH3 and NH4+ and chemical symbols are used when specificity is required.) We therefore developed a yeast (Saccharomyces cerevisiae) complementation approach and isolated two Arabidopsis (Arabidopsis thaliana) genes that conferred tolerance to the toxic ammonium analog methylammonium in yeast. Both genes, AtTIP2;1 and AtTIP2;3, encode aquaporins of the tonoplast intrinsic protein subfamily and transported methylammonium or ammonium in yeast preferentially at high medium PH. AtTIP2;1 expression in Xenopus oocytes increased C-14-methylammonium accumulation with increasing pH. AtTIP2;1- and AtTIP2;3-mediated methylammonium detoxification in yeast depended on a functional vacuole, which was in agreement with the subcellular localization of green fluorescent protein-fusion proteins on the tonoplast in planta. Transcript levels of both AtTlPs were influenced by nitrogen supply but did not follow those of the nitrogen-derepressed ammonium transporter gene AtAMT1;1. Transgenic Arabidopsis plants overexpressing AtTIP2;1 did not show altered ammonium accumulation in roots after ammonium supply, although AtTIP2;1 mRNA levels in wild-type plants were up-regulated under these conditions. This study shows that AtTIP2;1 and AtTIP2;3 can mediate the extracytosolic transport of methyl-NH2 and NH3 across the tonoplast membrane and may thus participate in vacuolar ammonium compartmentation.
引用
收藏
页码:671 / 680
页数:10
相关论文
共 54 条
[1]   Plant cells are not just green yeast [J].
Bassham, DC ;
Raikhel, NV .
PLANT PHYSIOLOGY, 2000, 122 (04) :999-1001
[2]   Cytosolic concentrations and transmembrane fluxes of NH4+/NH3.: An evaluation of recent proposals [J].
Britto, DT ;
Glass, ADM ;
Kronzucker, HJ ;
Siddiqi, MY .
PLANT PHYSIOLOGY, 2001, 125 (02) :523-526
[3]   Futile transmembrane NH+4 cycling:: A cellular hypothesis to explain ammonium toxicity in plants [J].
Britto, DT ;
Siddiqi, MY ;
Glass, ADM ;
Kronzucker, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :4255-4258
[4]   Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress [J].
Clarkson, DT ;
Carvajal, M ;
Henzler, T ;
Waterhouse, RN ;
Smyth, AJ ;
Cooke, DT ;
Steudle, E .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (342) :61-70
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site [J].
Daniels, MJ ;
Chaumont, F ;
Mirkov, TE ;
Chrispeels, MJ .
PLANT CELL, 1996, 8 (04) :587-599
[7]   COMPARISON OF EFFECTS OF A LOCALIZED SUPPLY OF PHOSPHATE, NITRATE, AMMONIUM AND POTASSIUM ON GROWTH OF SEMINAL ROOT SYSTEM, AND SHOOT, IN BARLEY [J].
DREW, MC .
NEW PHYTOLOGIST, 1975, 75 (03) :479-490
[8]   Translocation of NH4+ in oilseed rape plants in relation to glutamine synthetase isogene expression and activity [J].
Finnemann, J ;
Schjoerring, JK .
PHYSIOLOGIA PLANTARUM, 1999, 105 (03) :469-477
[9]   Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into arabidopsis roots [J].
Gazzarrini, S ;
Lejay, L ;
Gojon, A ;
Ninnemann, O ;
Frommer, WB ;
von Wirén, N .
PLANT CELL, 1999, 11 (05) :937-947
[10]   Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants -: Nitrogen form and water uptake [J].
Guo, S ;
Brück, H ;
Sattelmacher, B .
PLANT AND SOIL, 2002, 239 (02) :267-275