An Induced Sorghum Mutant Population Suitable for Bioenergy Research

被引:42
作者
Xin, Zhanguo [1 ]
Wang, Ming Li [2 ]
Burow, Gloria [1 ]
Burke, John [1 ]
机构
[1] ARS, Plant Stress & Germplasm Dev Unit, USDA, Lubbock, TX 79415 USA
[2] ARS, PGRCU, USDA, Griffin, GA 30223 USA
关键词
Biofuel production; BTx623; EMS; Mutagenesis; Mutant population; Sorghum; CHEMICALLY-INDUCED MUTATIONS; MAIZE; ACID; ASSOCIATION; RESOURCES; YIELD; RFLP; RICE; SSR; MAP;
D O I
10.1007/s12155-008-9029-3
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The sorghum [Sorghum bicolor (L.) Moench] inbred line BTx623 has served as a parent for development of several mapping populations, also providing a source for the generation of DNA libraries for physical mapping, and as the inbred line selected for sorghum genome sequencing. Since genetic mapping, physical mapping and genome sequencing are all based on the same inbred line, these genetic resources have made the genome study of sorghum very efficient. However, in comparison with other model species, there is one important genetic resource still missing in the sorghum research community, a mutant population. A systematically annotated mutant population will facilitate many avenues of research, especially those focusing on functional genomics and bioenergy research. Here we report the generation of a sorghum mutant population derived from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). The mutant population consists of 1,600 pedigreed M-3 families; each of them was derived from an independent M-1 seed. Many lines displayed traits such as brown midrib (bmr), erect leaves (erl), multiple tillers (mtl), and late flowering (lfl), characteristics useful for bioenergy research. Results from our phenotyping and genotyping studies indicate that this mutant population will be a valuable and useful genetic resource for both sorghum functional genomics and bioenergy research.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 28 条
[1]   An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench [J].
Bhattramakki, D ;
Dong, JM ;
Chhabra, AK ;
Hart, GE .
GENOME, 2000, 43 (06) :988-1002
[2]   A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase [J].
Bout, S ;
Vermerris, W .
MOLECULAR GENETICS AND GENOMICS, 2003, 269 (02) :205-214
[3]   Sorghum bicolor's transeriptome response to dehydration, high salinity and ABA [J].
Buchanan, CD ;
Lim, SY ;
Salzman, RA ;
Kagiampakis, L ;
Morishige, DT ;
Weers, BD ;
Klein, RR ;
Pratt, LH ;
Cordonnier-Pratt, MM ;
Klein, PE ;
Mullet, JE .
PLANT MOLECULAR BIOLOGY, 2005, 58 (05) :699-720
[4]   The maize caffeic acid O-methyltransferase gene promoter is active in transgenic tobacco and maize plant tissues [J].
Capellades, M ;
Torres, MA ;
Bastisch, I ;
Stiefel, V ;
Vignols, F ;
Bruce, WB ;
Peterson, D ;
Puigdomenech, P ;
Rigau, J .
PLANT MOLECULAR BIOLOGY, 1996, 31 (02) :307-322
[5]   Maize and sorghum: genetic resources for bioenergy grasses [J].
Carpita, Nicholas C. ;
McCann, Maureen C. .
TRENDS IN PLANT SCIENCE, 2008, 13 (08) :415-420
[6]   Community resources and strategies for association mapping in sorghum [J].
Casa, Alexandra M. ;
Pressoir, Gael ;
Brown, Patrick J. ;
Mitchell, Sharon E. ;
Rooney, William L. ;
Tuinstra, Mitchell R. ;
Franks, Cleve D. ;
Kresovich, Stephen .
CROP SCIENCE, 2008, 48 (01) :30-40
[7]   TILLING to detect induced mutations in soybean [J].
Cooper, Jennifer L. ;
Till, Bradley J. ;
Laport, Robert G. ;
Darlow, Margaret C. ;
Kleffner, Justin M. ;
Jamai, Aziz ;
El-Mellouki, Tarik ;
Liu, Shiming ;
Ritchie, Rae ;
Nielsen, Niels ;
Bilyeu, Kristin D. ;
Meksem, Khalid ;
Comai, Luca ;
Henikoff, Steven .
BMC PLANT BIOLOGY, 2008, 8 (1)
[8]   Maize biomass yield and composition for biofuels [J].
Dhugga, Kanwarpal S. .
CROP SCIENCE, 2007, 47 (06) :2211-2227
[9]  
*DOE, 2006, DOESC0095 OFF SCI OF
[10]  
Greene EA, 2003, GENETICS, V164, P731