Sustained microtubule treadmilling in Arabidopsis cortical arrays

被引:365
作者
Shaw, SL
Kamyar, R
Ehrhardt, DW
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
关键词
D O I
10.1126/science.1083529
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plant cells create highly structured microtubule arrays at the cell cortex without a central organizing center to anchor the microtubule ends. In vivo imaging of individual microtubules in Arabidopsis plants revealed that new microtubules are initiated at the cell cortex and exhibit dynamics at both ends. Polymerization-biased dynamic instability at one end and slow depolymerization at the other end result in sustained microtubule migration across the cell cortex by a hybrid treadmilling mechanism. This motility causes widespread microtubule repositioning and contributes to changes in array organization through microtubule reorientation and bundling.
引用
收藏
页码:1715 / 1718
页数:4
相关论文
共 27 条