Why odd-space and odd-time dimensions in even-dimensional spaces?

被引:15
作者
Borstnik, NM
Nielsen, HB
机构
[1] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia
[2] Jozef Stefan Inst, Ljubljana 1111, Slovenia
[3] Primorska Inst Nat Sci & Technol, Koper 6000, Slovenia
[4] Niels Bohr Inst, Dept Phys, DK-2100 Copenhagen, Denmark
[5] CERN, Div TH, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1016/S0370-2693(00)00775-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We are answering the question why 4-dimensional space has the metric 1 + 3 by making a general argument from a certain type of equations of motion linear in momentum for any spin (except spin zero) in any even dimension d. All known free equations of motion for non-zero spin for massless fields belong to this type of equations. Requiring Hermiticity(1) of the equations of motion operator as well as irreducibility with respect to the Lorentz group representation, we Drove that only metrics with the signature corresponding to q time + (d - q) space dimensions with q being odd exist, Correspondingly, in four dimensional space, Nature could only make the realization of 1 + 3-dimensional space. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:314 / 321
页数:8
相关论文
共 37 条
[1]  
BARBOUR IM, 1976, FUNDAMENTALS QUARK M, P528
[2]   GROUP THEORETICAL DISCUSSION OF RELATIVISTIC WAVE EQUATIONS [J].
BARGMANN, V ;
WIGNER, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1948, 34 (05) :211-223
[3]  
BORSTNIK A, 1999, P INT WORKSH WHAT CO, P52
[4]  
BORSTNIK A, UNPUB
[5]  
BORSTNIK NM, 1999, P INT WORKSH WHAT CO, P68
[6]  
BORSTNIK NM, 1999, IN PRESS PHYS REV D, V15
[7]  
BORSTNIK NM, 1994, INT J MOD PHYS A, V9, P1731
[8]  
BORSTNIK NM, 1999, J PHYS G, V24, P963
[9]  
BORSTNIK NM, 2000, UNPUB INTERNAL SPACE
[10]  
BORSTNIK NM, 1997, NUOVO CIMENTO B, V112, P637