Stability of n-dimensional patterns in a generalized Turing system:: implications for biological pattern formation

被引:22
作者
Alber, M
Glimm, T
Hentschel, HGE
Kazmierczak, B
Newman, SA
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[3] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA
关键词
D O I
10.1088/0951-7715/18/1/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability of Turing patterns in an n-dimensional cube (0, pi)(n) is studied, where n greater than or equal to 2. It is shown by using a generalization of a classical result of Ermentrout concerning spots and stripes in two dimensions that under appropriate assumptions only sheet-like or nodule-like structures can be stable in an n-dimensional cube. Other patterns can also be stable in regions comprising products of lower-dimensional cubes and intervals of appropriate length. Stability results are applied to a new model of skeletal pattern formation in the vertebrate limb.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]   Symmetry-breaking bifurcations on cubic lattices [J].
Callahan, TK ;
Knobloch, E .
NONLINEARITY, 1997, 10 (05) :1179-1216
[3]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[4]  
CHATURVEDI R, 2004, MULTISCALE APPROACHE
[5]  
Crampin E.J., 2001, Meth App Anal, V8, P415, DOI DOI 10.4310/MAA.2001.V8.N3.A3
[6]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[7]  
DORONIE SA, 1994, DEV BIOL, V162, P195
[8]   STRIPES OR SPOTS - NONLINEAR EFFECTS IN BIFURCATION OF REACTION-DIFFUSION EQUATIONS ON THE SQUARE [J].
ERMENTROUT, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1891) :413-417
[9]  
Folland G.B., 1999, REAL ANAL
[10]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39