Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

被引:113
作者
Fischbach, Michael A.
Lai, Jonathan R.
Roche, Eric D.
Walsh, Christopher T.
Liu, David R.
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[2] Harvard Univ, Howard Hughes Med Inst, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
nonribosomal peptide; polyketide;
D O I
10.1073/pnas.0705348104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with approximate to 10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/ polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts.
引用
收藏
页码:11951 / 11956
页数:6
相关论文
共 30 条
[1]   Molecular engineering approaches to peptide, polyketide and other antibiotics [J].
Baltz, Richard H. .
NATURE BIOTECHNOLOGY, 2006, 24 (12) :1533-1540
[2]   Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations [J].
Cane, DE ;
Walsh, CT ;
Khosla, C .
SCIENCE, 1998, 282 (5386) :63-68
[3]   In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex [J].
Chiocchini, Claudia ;
Linne, Uwe ;
Stachelhaus, Torsten .
CHEMISTRY & BIOLOGY, 2006, 13 (08) :899-908
[4]   Complementation of daptomycin dptA and dptD deletion mutations in trans and production of hybrid lipopeptide antibiotics [J].
Coeffet-Le Gal, Marie-Francoise ;
Thurston, Lisa ;
Rich, Paul ;
Miao, Vivian ;
Baltz, Richard H. .
MICROBIOLOGY-SGM, 2006, 152 :2993-3001
[5]   Dipeptide formation on engineered hybrid peptide synthetases [J].
Doekel, S ;
Marahiel, MA .
CHEMISTRY & BIOLOGY, 2000, 7 (06) :373-384
[6]   How pathogenic bacteria evade mammalian sabotage in the battle for iron [J].
Fischbach, MA ;
Lin, HN ;
Liu, DR ;
Walsh, CT .
NATURE CHEMICAL BIOLOGY, 2006, 2 (03) :132-138
[7]   Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms [J].
Fischbach, Michael A. ;
Walsh, Christopher T. .
CHEMICAL REVIEWS, 2006, 106 (08) :3468-3496
[8]   Novel bacterial acetyl coenzyme a carboxylase inhibitors with antibiotic efficacy in vivo [J].
Freiberg, C. ;
Pohlmann, J. ;
Nell, P. G. ;
Endermann, R. ;
Schuhmacher, J. ;
Newton, B. ;
Otteneder, M. ;
Lampe, T. ;
Haebich, D. ;
Ziegelbauer, K. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2006, 50 (08) :2707-2712
[9]   Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF [J].
Gehring, AM ;
Mori, I ;
Walsh, CT .
BIOCHEMISTRY, 1998, 37 (08) :2648-2659
[10]   Characterization of the syringomycin synthetase gene cluster - A link between prokaryotic and eukaryotic peptide synthetases [J].
Guenzi, E ;
Galli, G ;
Grgurina, I ;
Gross, DC ;
Grandi, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32857-32863