Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function

被引:183
作者
Quievryn, G [1 ]
Zhitkovich, A [1 ]
机构
[1] Brown Univ, Dept Pathol & Lab Med, Providence, RI 02912 USA
关键词
D O I
10.1093/carcin/21.8.1573
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
DNA-protein crosslinks (I)PC) involving all major histones are the dominant form of DNA damage in formaldehyde-exposed cells. In order to understand the repair mechanisms for these lesions we conducted detailed analysis of the stability of formaldehyde-induced DPC in vitro and in human cells. DNA-histone linkages were found to be hydrolytically unstable, with t 1/2 = 18.3 h at 37 degrees C. When histones were allowed to remain bound to DNA after crosslink breakage, the half-life of DPC increased to 26.3 h, This suggests that similar to 30% of spontaneously broken DPC could be re-established under physiological conditions. The half-lives of DPC in three human cell lines (HF/SV fibroblasts, kidney Ad293 and lung A549 cells) were similar and averaged 12.5 h (range 11.6-13.0 h), After adjustment for spontaneous loss, an active repair process was calculated to eliminate DPC from these cells with an average t 1/2 = 23.3 h, Removal of DPC from peripheral human lymphocytes was slower (t 1/2 = 18.1 h), due to inefficient active repair (t 1/2 = 66.6 h), This indicates that the major portion of DPC is lost from lymphocytes through spontaneous hydrolysis rather than being actively repaired, Depletion of intracellular glutathione from A549 cells had no significant effect on the initial levels of DPC, the rate of their repair or cell survival. Nucleotide excision repair does not appear to be involved in the removal of I)PC, since the kinetics of DPC elimination in XP-A and XP-F fibroblasts were very similar to normal cells. Incubation of normal or XP-A cells with lactacystin, a specific inhibitor of proteosomes, caused inhibition of DPC repair, suggesting that the active removal of DPC in cells may involve proteolytic degradation of crosslinked proteins. XP-F cells showed somewhat higher sensitivity to formaldehyde, possibly signaling participation of XPF protein in the removal of residual peptide-DNA adducts.
引用
收藏
页码:1573 / 1580
页数:8
相关论文
共 54 条
[1]  
ARRICK BA, 1982, J BIOL CHEM, V257, P1231
[2]   DEFICIENT NUCLEOTIDE EXCISION-REPAIR ACTIVITY IN PROTEIN EXTRACTS FROM NORMAL HUMAN-LYMPHOCYTES [J].
BARRET, JM ;
CALSOU, P ;
SALLES, B .
CARCINOGENESIS, 1995, 16 (07) :1611-1616
[3]   Structures of acrolein-guanine adducts: A semi-empirical self-consistent field and nuclear magnetic resonance spectral study [J].
Boerth, DW ;
Eder, E ;
Hussain, S ;
Hoffman, C .
CHEMICAL RESEARCH IN TOXICOLOGY, 1998, 11 (04) :284-294
[4]   DNA repair fine structure and its relations to genomic instability [J].
Bohr, VA .
CARCINOGENESIS, 1995, 16 (12) :2885-2892
[5]   COVALENT BINDING OF INHALED FORMALDEHYDE TO DNA IN THE NASAL-MUCOSA OF FISCHER 344 RATS - ANALYSIS OF FORMALDEHYDE AND DNA BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY AND PROVISIONAL PHARMACOKINETIC INTERPRETATION [J].
CASANOVA, M ;
DEYO, DF ;
HECK, HD .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1989, 12 (03) :397-417
[7]   COVALENT BINDING OF INHALED FORMALDEHYDE TO DNA IN THE RESPIRATORY-TRACT OF RHESUS-MONKEYS - PHARMACOKINETICS, RAT-TO-MONKEY INTERSPECIES SCALING, AND EXTRAPOLATION TO MAN [J].
CASANOVA, M ;
MORGAN, KT ;
STEINHAGEN, WH ;
EVERITT, JI ;
POPP, JA ;
HECK, HD .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1991, 17 (02) :409-428
[8]   The ubiquitin-proteasome pathway: on protein death and cell life [J].
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (24) :7151-7160
[9]  
Cnubben NHP, 1998, CANCER RES, V58, P4616
[10]  
COHENHUBAL EA, 1997, TOXICOL APPL PHARM, V143, P47