Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations

被引:54
作者
Hedlund, Eva
Pruszak, Jan
Ferree, Andrew
Vinuela, Angel
Hong, Sunghoi
Isacson, Ole
Kim, Kwang-Soo
机构
[1] Harvard Univ, McLean Hosp, Sch Med, Udall Parkinsons Dis Res Ctr Excellence, Belmont, MA 02478 USA
[2] Harvard Univ, McLean Hosp, Sch Med, Mol Neurobiol Labs, Belmont, MA 02478 USA
[3] Harvard Univ, McLean Hosp, Sch Med, Neurogenerat Labs, Belmont, MA 02478 USA
关键词
genetic engineering; fluorescence-activated cell sorting; Parkinson disease; stage-specific embryonic antigen 1; CD-15;
D O I
10.1634/stemcells.2006-0540
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Transplantation of mouse embryonic stem (mES) cells can restore function in Parkinson disease models, but can generate teratomas. Purification of dopamine neurons derived from embryonic stem cells by fluorescence-activated cell sorting ( FACS) could provide a functional cell population for transplantation while eliminating the risk of teratoma formation. Here we used the tyrosine hydroxylase (TH) promoter to drive enhanced green fluorescent protein (eGFP) expression in mES cells. First, we evaluated 2.5-kilobase (kb) and 9-kb TH promoter fragments and showed that clones generated using the 9-kb fragment produced significantly more eGFP+/TH+ neurons. We selected the 9-kb TH clone with the highest eGFP/TH overlap for further differentiation, FACS, and transplantation experiments. Grafts contained large numbers of eGFP+ dopamine neurons of an appropriate phenotype. However, there were also numerous eGFP+ cells that did not express TH and did not have a neuronal morphology. In addition, we found cells in the grafts representing all three germ layers. Based on these findings, we examined the expression of stem cell markers in our eGFP+ population. We found that a majority of eGFP+ cells were stage-specific embryonic antigen-positive (SSEA-1+) and that the genetically engineered clones contained more SSEA-1+ cells after differentiation than the original D3 mES cells. By negative selection of SSEA-1, we could isolate a neuronal eGFP+ population of high purity. These results illustrate the complexity of using genetic selection to purify mES cell-derived dopamine neurons and provide a comprehensive analysis of cell selection strategies based on tyrosine hydroxylase expression.
引用
收藏
页码:1126 / 1135
页数:10
相关论文
共 71 条
[1]   Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite [J].
Albanèse, V ;
Biguet, NF ;
Kiefer, H ;
Bayard, E ;
Mallet, J ;
Meloni, R .
HUMAN MOLECULAR GENETICS, 2001, 10 (17) :1785-1792
[2]  
Andersson E, 2006, CELL, V124, P393, DOI [10.1016/j.cell.2005.10.037, 10.1016/J.CELL.2005.10.037]
[3]   Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo [J].
Arlotta, P ;
Molyneaux, BJ ;
Chen, J ;
Inoue, J ;
Kominami, R ;
Macklis, JD .
NEURON, 2005, 45 (02) :207-221
[4]   Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space [J].
Arnhold, S ;
Klein, H ;
Semkova, I ;
Addicks, K ;
Schraermeyer, U .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (12) :4251-4255
[5]   TRANSIENT CATECHOLAMINERGIC (TC) CELLS IN THE VAGUS NERVES AND BOWEL OF FETAL MICE - RELATIONSHIP TO THE DEVELOPMENT OF ENTERIC NEURONS [J].
BAETGE, G ;
GERSHON, MD .
DEVELOPMENTAL BIOLOGY, 1989, 132 (01) :189-211
[6]   TRANSIENTLY CATECHOLAMINERGIC (TC) CELLS IN THE BOWEL OF THE FETAL-RAT - PRECURSORS OF NONCATECHOLAMINERGIC ENTERIC NEURONS [J].
BAETGE, G ;
PINTAR, JE ;
GERSHON, MD .
DEVELOPMENTAL BIOLOGY, 1990, 141 (02) :353-380
[7]   Behavioral changes in unilaterally 6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration [J].
Baier, PC ;
Schindehütte, J ;
Thinyane, K ;
Flügge, G ;
Fuchs, E ;
Mansouri, A ;
Paulus, W ;
Gruss, P ;
Trenkwalder, C .
STEM CELLS, 2004, 22 (03) :396-404
[8]  
BANERJEE SA, 1992, J NEUROSCI, V12, P4460
[9]   Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice [J].
Barberi, T ;
Klivenyi, P ;
Calingasan, NY ;
Lee, H ;
Kawamata, H ;
Loonam, K ;
Perrier, AL ;
Bruses, J ;
Rubio, ME ;
Topf, N ;
Tabar, V ;
Harrison, NL ;
Beal, MF ;
Moore, MAS ;
Studer, L .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1200-1207
[10]   Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats [J].
Ben-Hur, T ;
Idelson, M ;
Khaner, H ;
Pera, M ;
Reinhartz, E ;
Itzik, A ;
Reubinoff, BE .
STEM CELLS, 2004, 22 (07) :1246-1255