Fermentation of biomass-generated synthesis gas: Effects of nitric oxide

被引:80
作者
Ahmed, Asma
Lewis, Randy S.
机构
[1] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA
[2] Oklahoma State Univ, Biosyst & Agr Engn, Stillwater, OK 74078 USA
关键词
syngas; ethanol; fermentation; biomass; hydrogenase;
D O I
10.1002/bit.21305
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The production of renewable fuels, such as ethanol, has been steadily increasing owing to the need for a reduced dependency on fossil fuels. It was demonstrated previously that biomass-generated synthesis gas (biomass-syngas) can be converted to ethanol and acetic acid using a microbial catalyst. The biomass-syngas (primarily CO, CO2, H-2, and N-2) was generated in a fluidizedbed gasifier and T used as a substrate for Clostridium carboxidivorans P7(T). Results showed that the cells stopped consuming H-2 when exposed to biomass-syngas, thus indicating that there was an inhibition of the hydrogenase enzyme due to some biomass-syngas contaminant. It was hypothesized that nitric oxide (NO) detected in the biomass-syngas could be the possible cause of this inhibition. The specific activity of hydrogenase was monitored with time under varying concentrations of H-2 and NO. Results indicated that NO (at gas concentrations above 40 ppm) was a non-competitive inhibitor of hydrogenase activity, although the loss of hydrogenase activity was reversible. In addition, NO also affected the cell growth and increased the amount of ethanol produced. A kinetic model of hydrogenase activity with inhibition by NO was demonstrated with results suggesting there are multiple binding sites of NO on the hydrogenase enzyme. Since other syngas-fermenting organisms utilize the same metabolic pathways, this study estimates that NO < 40 ppm can be tolerated by cells in a syngas-fermentation system without compromising the hydrogenase activity, cell growth, and product distribution.
引用
收藏
页码:1080 / 1086
页数:7
相关论文
共 33 条
[1]   CLOSTRIDIUM AUTOETHANOGENUM, SP-NOV, AN ANAEROBIC BACTERIUM THAT PRODUCES ETHANOL FROM CARBON-MONOXIDE [J].
ABRINI, J ;
NAVEAU, H ;
NYNS, EJ .
ARCHIVES OF MICROBIOLOGY, 1994, 161 (04) :345-351
[2]   Toxicity of nitric oxide and peroxynitrite to Photobacterium damselae subsp piscicida [J].
Acosta, F ;
Real, F ;
de Galarreta, CMR ;
Diaz, R ;
Padilla, D ;
Ellis, AE .
FISH & SHELLFISH IMMUNOLOGY, 2003, 15 (03) :241-248
[3]  
Ahmed A., 2006, THESIS OKLAHOMA STAT
[4]   Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T [J].
Ahmed, Asma ;
Cateni, Bruno G. ;
Huhnke, Raymond L. ;
Lewis, Randy S. .
BIOMASS & BIOENERGY, 2006, 30 (07) :665-672
[5]   CATALYSIS IN THERMAL BIOMASS CONVERSION [J].
BRIDGWATER, AV .
APPLIED CATALYSIS A-GENERAL, 1994, 116 (1-2) :5-47
[6]   Absorption of NO in an alkaline solution of KMnO4 [J].
Brogren, C ;
Karlsson, HT ;
Bjerle, I .
CHEMICAL ENGINEERING & TECHNOLOGY, 1997, 20 (06) :396-402
[7]   Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions [J].
Chu, H ;
Chien, TW ;
Li, SY .
SCIENCE OF THE TOTAL ENVIRONMENT, 2001, 275 (1-3) :127-135
[8]   Fermentation of biomass-generated producer gas to ethanol [J].
Datar, RP ;
Shenkman, RM ;
Cateni, BG ;
Huhnke, RL ;
Lewis, RS .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 86 (05) :587-594
[9]   Novel effects of nitric oxide [J].
Davis, KL ;
Martin, E ;
Turko, IV ;
Murad, F .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2001, 41 :203-236
[10]   A review of the primary measures for tar elimination in biomass gasification processes [J].
Devi, L ;
Ptasinski, KJ ;
Janssen, FJJG .
BIOMASS & BIOENERGY, 2003, 24 (02) :125-140