Quantum Hall smectics, sliding symmetry, and the renormalization group

被引:20
作者
Lawler, MJ [1 ]
Fradkin, E [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.165310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we discuss the implication of the existence of a sliding symmetry, equivalent to the absence of a shear modulus, on the low-energy theory of the quantum hall smectic (QHS) state. We show, through renormalization group calculations, that such a symmetry causes the naive continuum approximation in the direction perpendicular to the stripes to break down through infrared divergent contributions originating from naively irrelevant operators. In particular, we show that the correct fixed point has the form of an array of sliding Luttinger liquids which is free from superficially "irrelevant operators." Similar considerations apply to all theories with sliding symmetries.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 32 条
[1]  
[Anonymous], 1998, PRINCIPLES CONDENSED
[2]  
BARCI DG, 2001, PHYS REV B, V65, P2306
[3]  
BARCI DG, 2001, PHYS REV B, V65, P2306
[4]   An investigation of orientational symmetry-breaking mechanisms in high Landau levels [J].
Cooper, KB ;
Lilly, MP ;
Eisenstein, JP ;
Jungwirth, T ;
Pfeiffer, LN ;
West, KW .
SOLID STATE COMMUNICATIONS, 2001, 119 (02) :89-94
[5]  
COOPER KB, 1999, PHYS REV B, V63, P2306
[6]   Collective modes of quantum Hall stripes [J].
Côté, R ;
Fertig, HA .
PHYSICAL REVIEW B, 2000, 62 (03) :1993-2007
[7]   Strongly anisotropic transport in higher two-dimensional Landau levels [J].
Du, RR ;
Tsui, DC ;
Stormer, HL ;
Pfeiffer, LN ;
Baldwin, KW ;
West, KW .
SOLID STATE COMMUNICATIONS, 1999, 109 (06) :389-394
[8]   Quantum theory of the smectic metal state in stripe phases [J].
Emery, VJ ;
Fradkin, E ;
Kivelson, SA ;
Lubensky, TC .
PHYSICAL REVIEW LETTERS, 2000, 85 (10) :2160-2163
[9]   Unlocking transition for modulated surfaces and quantum Hall stripes [J].
Fertig, HA .
PHYSICAL REVIEW LETTERS, 1999, 82 (18) :3693-3696
[10]   Ground state of a two-dimensional electron liquid in a weak magnetic field [J].
Fogler, MM ;
Koulakov, AA ;
Shklovskii, BI .
PHYSICAL REVIEW B, 1996, 54 (03) :1853-1871