Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites

被引:34
作者
Barr, AC
Pappalardo, RT
Zhong, SJ
机构
[1] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
convection; icy satellites; non-Newtonian rheology;
D O I
10.1029/2004JE002296
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
[ 1] At the temperatures and stresses associated with the onset of convection in an ice I shell of the Galilean satellites, ice behaves as a non-Newtonian fluid with a viscosity that depends on both temperature and strain rate. The convective stability of a non-Newtonian ice shell can be judged by comparing the Rayleigh number of the shell to a critical value. Previous studies suggest that the critical Rayleigh number for a non-Newtonian fluid depends on the initial conditions in the fluid layer, in addition to the thermal, rheological, and physical properties of the fluid. We seek to extend the existing definition of the critical Rayleigh number for a non-Newtonian, basally heated fluid by quantifying the conditions required to initiate convection in an ice I layer initially in conductive equilibrium. We find that the critical Rayleigh number for the onset of convection in ice I varies as a power (- 0.6 to -0.5) of the amplitude of the initial temperature perturbation issued to the layer, when the amplitude of perturbation is less than the rheological temperature scale. For larger-amplitude perturbations, the critical Rayleigh number achieves a constant value. We characterize the critical Rayleigh number as a function of surface temperature of the satellite, melting temperature of ice, and rheological parameters so that our results may be extrapolated for use with other rheologies and for a generic large icy satellite. The values of critical Rayleigh number imply that triggering convection from a conductive equilibrium in a pure ice shell less than 100 km thick in Europa, Ganymede, or Callisto requires a large, localized temperature perturbation of a few kelvins to tens of kelvins to soften the ice and therefore may require tidal dissipation in the ice shell.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 40 条
[1]   Europa's differentiated internal structure: Inferences from four Galileo encounters [J].
Anderson, JD ;
Schubert, G ;
Jacobson, RA ;
Lau, EL ;
Moore, WB ;
Sjogren, WL .
SCIENCE, 1998, 281 (5385) :2019-2022
[2]   Sulfuric acid on Europa and the radiolytic sulfur cycle [J].
Carlson, RW ;
Johnson, RE ;
Anderson, MS .
SCIENCE, 1999, 286 (5437) :97-99
[3]  
Chandrasekhar S., 1961, INT SERIES MONOGRAPH
[4]   HEAT-TRANSPORT BY VARIABLE VISCOSITY CONVECTION-II - PRESSURE INFLUENCE, NON-NEWTONIAN RHEOLOGY AND DECAYING HEAT-SOURCES [J].
CHRISTENSEN, UR .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1985, 37 (2-3) :183-205
[5]   ONSET OF THERMAL-CONVECTION IN FLUIDS WITH TEMPERATURE-DEPENDENT VISCOSITY - APPLICATION TO THE OCEANIC MANTLE [J].
DAVAILLE, A ;
JAUPART, C .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B10) :19853-19866
[6]   DYNAMICS OF THE URANIAN AND SATURNIAN SATELLITE SYSTEMS - A CHAOTIC ROUTE TO MELTING MIRANDA [J].
DERMOTT, SF ;
MALHOTRA, R ;
MURRAY, CD .
ICARUS, 1988, 76 (02) :295-334
[7]   Rheological properties of water ice - Applications to satellites of the outer planets [J].
Durham, WB ;
Stern, LA .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2001, 29 :295-330
[8]   NEPTUNE STORY [J].
GOLDREICH, P ;
MURRAY, N ;
LONGARETTI, PY ;
BANFIELD, D .
SCIENCE, 1989, 245 (4917) :500-504
[9]   Superplastic deformation of ice: Experimental observations [J].
Goldsby, DL ;
Kohlstedt, DL .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2001, 106 (B6) :11017-11030
[10]   THE PLASTICITY OF POLYCRYSTALLINE ICE [J].
GOODMAN, DJ ;
FROST, HJ ;
ASHBY, MF .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1981, 43 (03) :665-695