Nitric oxide signalling in plants

被引:629
作者
Neill, SJ [1 ]
Desikan, R [1 ]
Hancock, JT [1 ]
机构
[1] Univ W England, Ctr Res Plant Sci, Bristol BS16 1QY, Avon, England
关键词
abscisic acid (ABA); cyclic ADP ribose and cyclic GMP; cyclic nucleotide-gated ion channels; nitric oxide synthase; nitrate reductase; plant-pathogen interactions; signal transduction; stomata;
D O I
10.1046/j.1469-8137.2003.00804.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Recently nitric oxide (NO) has emerged as a key signalling molecule in plants. Here we review the potential sources of endogenous NO, outline the biological processes likely to be mediated by NO, and discuss the downstream signalling processes by which NO exerts its cellular effects. It will be important to develop methods to quantify intracellular NO synthesis and release. Clasification of the biosynthetic origins of NO is also required. NO can be synthesised from nitrite via nitrate reductase (NR) and although biochemical and immunological data indicate the presence of enzyme(s) similar to mammalian nitric oxide synthase (NOS), no NOS genes have been identified. NO can induce various processes in plants, including the expression of defence-related genes and programmed cell death (PCD), stomatal closure, seed germination and root development. Intracellular signalling responses to NO involve generation of cGMP, cADPR and elevation of cytosolic calcium, but in many cases, the precise biochemical and cellular nature of these responses has not been detailed. Research priorities here must be the reliable quantification of downstream signalling molecules in NO-responsive cells, and cloning and manipulation of the enzymes responsible for synthesis and degradation of these molecules.
引用
收藏
页码:11 / 35
页数:25
相关论文
共 192 条
[1]   Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae [J].
Alamillo, JM ;
García-Olmedo, F .
PLANT JOURNAL, 2001, 25 (05) :529-540
[2]   RELEASE OF CA2+ FROM INDIVIDUAL PLANT VACUOLES BY BOTH INSP(3) AND CYCLIC ADP-RIBOSE [J].
ALLEN, GJ ;
MUIR, SR ;
SANDERS, D .
SCIENCE, 1995, 268 (5211) :735-737
[3]   EFFECTS OF NITRIC-OXIDE POLLUTION ON THE GROWTH OF TOMATO [J].
ANDERSON, LS ;
MANSFIELD, TA .
ENVIRONMENTAL POLLUTION, 1979, 20 (02) :113-121
[4]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[5]   A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains [J].
Arazi, T ;
Kaplan, B ;
Fromm, H .
PLANT MOLECULAR BIOLOGY, 2000, 42 (04) :591-601
[6]   Single-incision endoscopic anterior cruciate ligament reconstruction using patellar tendon autograft - Minimum two-year follow-up evaluation [J].
Bach, BR ;
Levy, ME ;
Bojchuk, J ;
Tradonsky, S ;
Bush-Joseph, CA ;
Khan, NH .
AMERICAN JOURNAL OF SPORTS MEDICINE, 1998, 26 (01) :30-40
[7]   Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase [J].
Bachmann, M ;
Shiraishi, N ;
Campbell, WH ;
Yoo, BC ;
Harmon, AC ;
Huber, SC .
PLANT CELL, 1996, 8 (03) :505-517
[8]   In situ characterization of a NO-sensitive peroxidase in the lignifying xylem of Zinnia elegans [J].
Barceló, AR ;
Pomar, F ;
Ferrer, MA ;
Martínez, P ;
Ballesta, MC ;
Pedreño, MA .
PHYSIOLOGIA PLANTARUM, 2002, 114 (01) :33-40
[9]   Localization of nitric-oxide synthase in plant peroxisomes [J].
Barroso, JB ;
Corpas, FJ ;
Carreras, A ;
Sandalio, LM ;
Valderrama, R ;
Palma, JM ;
Lupiáñez, JA ;
del Río, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36729-36733
[10]   Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers [J].
Beligni, MV ;
Fath, A ;
Bethke, PC ;
Lamattina, L ;
Jones, RL .
PLANT PHYSIOLOGY, 2002, 129 (04) :1642-1650