Automated Discovery of Novel Drug Formulations Using Predictive Iterated High Throughput Experimentation

被引:21
作者
Caschera, Filippo [1 ,2 ]
Gazzola, Gianluca [1 ]
Bedau, Mark A. [1 ,4 ,5 ,6 ]
Moreno, Carolina Bosch [1 ]
Buchanan, Andrew [1 ]
Cawse, James [1 ,7 ]
Packard, Norman [1 ,3 ,4 ]
Hanczyc, Martin M. [1 ,2 ]
机构
[1] ProtoLife Inc, San Francisco, CA USA
[2] Univ So Denmark, Inst Chem & Phys, Odense, Denmark
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] European Ctr Living Technol, Venice, Italy
[5] Reed Coll, Portland, OR 97202 USA
[6] Univ So Denmark, Initiat Sci Soc & Policy, Odense, Denmark
[7] Cawse & Effect, Pittsfield, MA USA
来源
PLOS ONE | 2010年 / 5卷 / 01期
关键词
AMPHOTERICIN-B; PROTEIN CRYSTALLIZATION; OPTIMIZATION; GLUCOSIDE; AMBISOME; BILAYERS;
D O I
10.1371/journal.pone.0008546
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: We consider the problem of optimizing a liposomal drug formulation: a complex chemical system with many components (e. g., elements of a lipid library) that interact nonlinearly and synergistically in ways that cannot be predicted from first principles. Methodology/Principal Findings: The optimization criterion in our experiments was the percent encapsulation of a target drug, Amphotericin B, detected experimentally via spectrophotometric assay. Optimization of such a complex system requires strategies that efficiently discover solutions in extremely large volumes of potential experimental space. We have designed and implemented a new strategy of evolutionary design of experiments (Evo-DoE), that efficiently explores high-dimensional spaces by coupling the power of computer and statistical modeling with experimentally measured responses in an iterative loop. Conclusions: We demonstrate how iterative looping of modeling and experimentation can quickly produce new discoveries with significantly better experimental response, and how such looping can discover the chemical landscape underlying complex chemical systems.
引用
收藏
页数:8
相关论文
共 22 条
[1]   AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience [J].
Adler-Moore, J ;
Proffitt, RT .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2002, 49 :21-30
[2]  
[Anonymous], 2001, Neural Networks: A Comprehensive Foundation
[3]  
[Anonymous], NIST SEMATECH E HDB
[4]   AmBisome (Liposomal amphotericin B): A comparative review [J].
Boswell, GW ;
Buell, D ;
Bekersky, I .
JOURNAL OF CLINICAL PHARMACOLOGY, 1998, 38 (07) :583-592
[5]  
CARTER CW, 1979, J BIOL CHEM, V254, P2219
[6]  
Cawse J.N., 2002, Experimental Design for Combinatorial and High Throughput Materials Development, V1st
[7]  
CAWSE JN, 2007, COMBINATORIAL MAT SC, P21
[8]   Efficient protein crystallization [J].
DeLucas, LJ ;
Bray, TL ;
Nagy, L ;
McCombs, D ;
Chernov, N ;
Hamrick, D ;
Cosenza, L ;
Belgovskiy, A ;
Stoops, B ;
Chait, A .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 142 (01) :188-206
[9]  
DEVARIAS DP, 2005, ADV NEURAL INFORM PR, P1
[10]  
Diggle PJ, 2007, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-48536-2