Cardiac p300 is involved in myocyte growth with decompensated heart failure

被引:183
作者
Yanazume, T
Hasegawa, K
Morimoto, T
Kawamura, T
Wada, H
Matsumori, A
Kawase, Y
Hirai, M
Kita, T
机构
[1] Kyoto Univ, Grad Sch Med, Dept Cardiovasc Med, Sakyo Ku, Kyoto 6068507, Japan
[2] Chugai Pharmaceut Co Ltd, Pharmacol Technol Lab, Shizuoka, Japan
关键词
D O I
10.1128/MCB.23.10.3593-3606.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A variety of stresses on the heart initiate a number of subcellular signaling pathways, which finally reach the nuclei of cardiac myocytes and cause myocyte hypertrophy with heart failure. However, common nuclear pathways that lead to this state are unknown. A zinc finger protein, GATA-4, is one of the transcription factors that mediate changes in gene expression during myocardial-cell hypertrophy. p300 not only acts as a transcriptional coactivator of GATA-4, but also possesses an intrinsic histone acetyltransferase activity. In primary cardiac myocytes derived from neonatal rats, we show that stimulation with phenylephrine increased an acetylated form of GATA-4 and its DNA-binding activity, as well as expression of p300. A dominant-negative mutant of p300 suppressed phenylephrine-induced nuclear acetylation, activation of GATA-4-dependent endothelin-1 promoters, and hypertrophic responses, such as increase in cell size and sarcomere organization. In sharp contrast to the activation of cardiac MEK-1, which phosphorylates GATA-4 and causes compensated hypertrophy in vivo, p300-mediated acetylation of mouse cardiac nuclear proteins, including GATA-4, results in marked eccentric dilatation and systolic dysfunction. These findings suggest that p300-mediated nuclear acetylation plays a critical role in the development of myocyte hypertrophy and represents a pathway that leads to decompensated heart failure.
引用
收藏
页码:3593 / 3606
页数:14
相关论文
共 63 条
[1]   CBP/p300 histone acetyl-transferase activity is important for the G1/S transition [J].
Ait-Si-Ali, S ;
Polesskaya, A ;
Filleur, S ;
Ferreira, R ;
Duquet, A ;
Robin, P ;
Vervish, A ;
Trouche, D ;
Cabon, F ;
Harel-Bellan, A .
ONCOGENE, 2000, 19 (20) :2430-2437
[2]   Phosphorylation by p44 MAP kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro [J].
Ait-Si-Ali, S ;
Carlisi, D ;
Ramirez, S ;
Upegui-Gonzalez, LC ;
Duquet, A ;
Robin, P ;
Rudkin, B ;
Harel-Bellan, A ;
Trouche, D .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 262 (01) :157-162
[3]   Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A [J].
Ait-Si-Ali, S ;
Ramirez, S ;
Barre, FX ;
Dkhissi, F ;
Magnaghi-Jaulin, L ;
Girault, JA ;
Robin, P ;
Knibiehler, M ;
Pritchard, LL ;
Ducommun, B ;
Trouche, D ;
Harel-Bellan, A .
NATURE, 1998, 396 (6707) :184-186
[4]   MOUSE GATA-4 - A RETINOIC ACID-INDUCIBLE GATA-BINDING TRANSCRIPTION FACTOR EXPRESSED IN ENDODERMALLY DERIVED TISSUES AND HEART [J].
ARCECI, RJ ;
KING, AAJ ;
SIMON, MC ;
ORKIN, SH ;
WILSON, DB .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (04) :2235-2246
[5]   Recruitment of p300/CBP in p53-dependent signal pathways [J].
Avantaggiati, ML ;
Ogryzko, V ;
Gardner, K ;
Giordano, A ;
Levine, AS ;
Kelly, K .
CELL, 1997, 89 (07) :1175-1184
[6]   The CBP co-activator is a histone acetyltransferase [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 1996, 384 (6610) :641-643
[7]   Functional analysis of the p300 acetyltransferase domain:: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity [J].
Bordoli, L ;
Hüsser, S ;
Lüthi, U ;
Netsch, M ;
Osmani, H ;
Eckner, R .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4462-4471
[8]   Regulation of activity of the transcription factor GATA-1 by acetylation [J].
Boyes, J ;
Byfield, P ;
Nakatani, Y ;
Ogryzko, V .
NATURE, 1998, 396 (6711) :594-598
[9]   The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice [J].
Bueno, OF ;
De Windt, LJ ;
Tymitz, KM ;
Witt, SA ;
Kimball, TR ;
Klevitsky, R ;
Hewett, TE ;
Jones, SP ;
Lefer, DJ ;
Peng, CF ;
Kitsis, RN ;
Molkentin, JD .
EMBO JOURNAL, 2000, 19 (23) :6341-6350
[10]   A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity [J].
Chakravarti, D ;
Ogryzko, V ;
Kao, HY ;
Nash, A ;
Chen, HW ;
Nakatani, Y ;
Evans, RM .
CELL, 1999, 96 (03) :393-403