Stability margins of nonlinear receding-horizon control via inverse optimality

被引:103
作者
Magni, L
Sepulchre, R
机构
[1] Univ Pavia, Dipartimento Informat & Sistemist, I-27100 Pavia, Italy
[2] Univ Liege, Inst Montefiore, B-4000 Liege, Belgium
关键词
receding-horizon control; nonlinear control; optimal control; HJB equation; robustness;
D O I
10.1016/S0167-6911(97)00079-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the nonlinear analog of the Fake Riccati equation developed for linear systems, we derive an inverse optimality result for several receding-horizon control schemes. This inverse optimality result unifies stability proofs and shows that receding-horizon control possesses the stability margins of optimal control laws. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 14 条
[1]  
Anderson B.D., 2007, Optimal control
[2]  
CHEN H, 1997, QUASIINFINITE HORIZO
[3]  
DENICOLAO G, IN PRESS IEEE T AUTO
[4]  
DENICOLAO G, 1997, FAKE RICCATI EQUATIO
[5]  
DENICOLAO G, 1996, IMACS MULT CESA 96 L
[6]   ROBUSTNESS OF NONLINEAR STATE FEEDBACK - A SURVEY [J].
GLAD, ST .
AUTOMATICA, 1987, 23 (04) :425-435
[7]  
Jacobson D.H., 1977, EXTENSIONS LINEAR QU
[8]  
KALMAN RE, 1964, T ASME, V86, P1, DOI DOI 10.1115/1.3653115
[9]   OPTIMAL INFINITE-HORIZON FEEDBACK LAWS FOR A GENERAL-CLASS OF CONSTRAINED DISCRETE-TIME-SYSTEMS - STABILITY AND MOVING-HORIZON APPROXIMATIONS [J].
KEERTHI, SS ;
GILBERT, EG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 57 (02) :265-293
[10]   RECEDING HORIZON CONTROL OF NONLINEAR-SYSTEMS [J].
MAYNE, DQ ;
MICHALSKA, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (07) :814-824