Meltrin alpha (a disintegrin and metalloprotease (ADAM) 12) is a recently discovered molecule of the metalloprotease-disintegrin family which has been shown to participate in myotube formation in vitro and in myogenesis in vivo. In this study we investigated meltrin alpha in regenerating rat muscle, which is a condition where satellite cells (SC) contribute to myofiber growth by fusing with one another and with myotubes or muscle fibers. We studied meltrin alpha mRNA expression by RT-PCR and in situ-hybridization in normal adult muscle, in soleus muscle regenerating for 2, 5, or 10 days, and in muscle which had been denervated 1 week, 4 weeks, or 6 months previously. SC do not fuse after denervation. They detach from the principal muscle fiber. Immunohistochemistry using an antibody against M-cadherin was performed in parallel in order to identify SC. Messenger RNA as revealed by RT-PCR was absent in normal adult muscle, but present in regenerating and also in denervated muscle. Meltrin alpha transcript detected by in situ-hybridization was present in regenerating muscle only, not in normal or denervated muscle. It was localized to SC. Taken together, meltrin alpha is absent in normal muscle, and localized to SC in fusing conditions. After denervation, the transcript is upregulated. However, it is so lowly abundant that it fails to be detected by in situ-hybridization. This expression profile suggests a role for meltrin alpha in the fusion of SC with myotubes or muscle fibers, but not in SC adhesion to the adjacent myofiber in normal adult muscle.