Log-periodic oscillations for biased diffusion on random lattice

被引:70
作者
Stauffer, D [1 ]
Sornette, D
机构
[1] Univ Cologne, Inst Theoret Phys, D-50923 Koln, Germany
[2] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[4] Univ Nice, Fac Sci, F-06108 Nice 2, France
来源
PHYSICA A | 1998年 / 252卷 / 3-4期
关键词
D O I
10.1016/S0378-4371(97)00680-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random walks with a fixed bias direction on randomly diluted cubic lattices far above the percolation threshold exhibit log-periodic oscillations in the effective exponent versus time. A scaling argument accounts for the numerical results in the limit of large biases and small dilution and shows the importance of the interplay of these two ingredients in the generation of the log-periodicity. These results show that log-periodicity is the dominant effect compared to previous predictions of and reports on anomalous diffusion. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 19 条
[1]   DIRECTED DIFFUSION IN A PERCOLATION NETWORK [J].
BARMA, M ;
DHAR, D .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (08) :1451-1458
[2]   DIFFUSION ON A ONE-DIMENSIONAL LATTICE WITH RANDOM ASYMMETRIC TRANSITION RATES [J].
BERNASCONI, J ;
SCHNEIDER, WR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12) :L729-L734
[3]   HOPPING CONDUCTIVITY IN ORDERED AND DISORDERED-SYSTEMS .3. [J].
BOTTGER, H ;
BRYKSIN, VV .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 113 (01) :9-49
[4]   MULTIFRACTAL FEATURES OF RANDOM-WALKS ON RANDOM FRACTALS [J].
BUNDE, A ;
HAVLIN, S ;
ROMAN, HE .
PHYSICAL REVIEW A, 1990, 42 (10) :6274-6277
[5]  
DEGENNES PG, 1976, RECHERCHE, V7, P916
[6]  
DUBRULLE B, 1997, SCALE INVARIANCE BEY
[7]  
DUPUIS H, 1997, TENDANCES 0918, P26
[8]  
GEFEN Y, 1992, J PHYS A, V15, pL691
[9]  
HAVLIN S, 1987, ADV PHYS, V36, P395
[10]  
JOHANSEN A, CANONICAL AVERAGING