Exact renormalization group equation for the Lifshitz critical point

被引:12
作者
Bervillier, C [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, CNRS, URA 2306,SPM,DSM,SPhT, F-91191 Gif Sur Yvette, France
关键词
exact renormalization group; derivative expansion; Lifshitz critical point;
D O I
10.1016/j.physleta.2004.07.069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(epsilon(2)) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(epsilon) finally unstable. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 17 条
[1]   RENORMALIZATION-GROUP ANALYSIS OF LIFSHITZ TRICRITICAL BEHAVIOR [J].
AHARONY, A ;
DOMANY, E ;
HORNREICH, RM .
PHYSICAL REVIEW B, 1987, 36 (04) :2006-2014
[2]   NOVEL LIFSHITZ TRICRITICAL POINT AND CRITICAL-DYNAMICS [J].
AHARONY, A ;
DOMANY, E ;
HORNREICH, RM ;
SCHNEIDER, T ;
ZANNETTI, M .
PHYSICAL REVIEW B, 1985, 32 (05) :3358-3360
[3]   Exact renormalization group equations: an introductory review [J].
Bagnuls, C ;
Bervillier, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (1-2) :91-157
[4]  
BERVILLIER C, HEPTH0405025
[6]   Critical behavior at m-axial Lifshitz points:: Field-theory analysis and ε-expansion results [J].
Diehl, HW ;
Shpot, M .
PHYSICAL REVIEW B, 2000, 62 (18) :12338-12349
[7]  
Diehl HW, 2002, ACTA PHYS SLOVACA, V52, P271
[8]   THE LIFSHITZ POINT - PHASE-DIAGRAMS AND CRITICAL-BEHAVIOR [J].
HORNREICH, RM .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1980, 15-8 (JAN-) :387-392
[9]   CRITICAL BEHAVIOR AT ONSET OF K-]-SPACE INSTABILITY ON LAMBDA-LINE [J].
HORNREICH, RM ;
LUBAN, M ;
SHTRIKMAN, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (25) :1678-1681
[10]   RENORMALIZATION GROUP CALCULATION FOR CRITICAL-POINTS OF HIGHER-ORDER WITH GENERAL PROPAGATOR [J].
NICOLL, JF ;
TUTHILL, GF ;
CHANG, TS ;
STANLEY, HE .
PHYSICS LETTERS A, 1976, 58 (01) :1-2