Surprising species-specific differences in non-homologous end-joining (NHEJ) of genomic double-strand breaks (DSBs) have been reported for the two dicotyledonous plants Arabidopsis thaliana and Nicotiana tabacum. In Arabidopsis deletions were, on average, larger than in tobacco and not associated with insertions. To establish the molecular basis of the phenomenon we analysed the fate of free DNA ends in both plant species by biolistic transformation of leaf tissue with linearized plasmid molecules. Southern blotting indicated that, irrespective of the nature of the ends (blunt, 5' or 3' overhangs), linearized full-length DNA molecules were, on average, more stable in tobacco than in Arabidopsis. The relative expression of a beta-glucuronidase gene encoded by the plasmid was similar in both plant species when the break was distant from the marker gene. However, if a DSB was introduced between the promoter and the open reading frame of the marker, transient expression was halved in Arabidopsis as compared to tobacco. These results indicate that free DNA ends are more stable in tobacco than in Arabidopsis, either due to lower DNA exonuclease activity or due to a better protection of DNA break ends or both. Exonucleolytic degradation of DNA ends might be a driving force in the evolution of genome size as the Arabidopsis genome is more than twenty times smaller than the tobacco genome.