Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis

被引:285
作者
Lu, FM
Selak, M
O'Connor, J
Croul, S
Lorenzana, C
Butunoi, C
Kalman, B
机构
[1] Med Coll Penn & Hahnemann Univ, Dept Neurol, Philadelphia, PA 19102 USA
[2] St Christophers Hosp Children, Barnett Ctr, Mitochondrial Biochem Lab, Philadelphia, PA 19133 USA
[3] Thomas Jefferson Univ, Dept Hlth Policy, Philadelphia, PA 19107 USA
[4] Rocky Mt Multiple Sclerosis Ctr, Englewood, CO USA
关键词
oxidative damage; neurodegeneration; multiple sclerosis;
D O I
10.1016/S0022-510X(00)00343-9
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Soluble products of activated immune cells include reactive oxygen species (ROS) and nitric oxide (NO) with a high potential to induce biochemical modifications and degenerative changes in areas of inflammation in the central nervous system (CNS). Previously, we demonstrated an increased production of ROS by activated mononuclear cells (MNC) of patients with multiple sclerosis (MS) compared to those of controls, and development of oxidative damage to total DNA in association with inflammation in chronic active plaques. The current study aimed to determine whether mitochondrial (mt)DNA is affected by oxidative damage, and whether oxidative damage to mitochondrial macromolecules (including mtDNA) is associated with a decline in the activity of mitochondrial enzyme complexes. Using molecular and biochemical methods we demonstrate a trend for impaired NADH dehydrogenase (DH) activity and a possible compensatory increase in complex IV activity in association with oxidative damage to mtDNA in chronic active plaques. Immunohistochemistry confirms the increase of oxidative damage to DNA predominantly located in the cytoplasmic compartment of cells in chronic active plaques. These observations suggest that oxidative damage to macromolecules develops in association with inflammation in the CNS, and may contribute to a decline of energy metabolism in affected cells. As observed in neurodegenerative diseases of non-inflammatory origin, decreased ATP synthesis can ultimately lead to cell death or degeneration. Therefore, elucidation of this pathway in MS deserves further studies which may identify neuroprotective strategies to prevent tissue degeneration and the associated clinical disability. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 50 条
[1]   Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis [J].
Bagasra, O ;
Michaels, FH ;
Zheng, YM ;
Bobroski, LE ;
Spitsin, SV ;
Fu, ZF ;
Tawadros, R ;
Koprowski, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) :12041-12045
[2]   AGING, ENERGY, AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISEASES [J].
BEAL, MF .
ANNALS OF NEUROLOGY, 1995, 38 (03) :357-366
[3]   INCREASED PRODUCTION OF INTERFERON GAMMA AND TUMOR NECROSIS FACTOR PRECEDES CLINICAL MANIFESTATION IN MULTIPLE-SCLEROSIS - DO CYTOKINES TRIGGER OFF EXACERBATIONS [J].
BECK, J ;
RONDOT, P ;
CATINOT, L ;
FALCOFF, E ;
KIRCHNER, H ;
WIETZERBIN, J .
ACTA NEUROLOGICA SCANDINAVICA, 1988, 78 (04) :318-323
[4]   AN EVALUATION OF THE MEASUREMENT OF THE ACTIVITIES OF COMPLEXES I-IV IN THE RESPIRATORY-CHAIN OF HUMAN SKELETAL-MUSCLE MITOCHONDRIA [J].
BIRCHMACHIN, MA ;
BRIGGS, HL ;
SABORIDO, AA ;
BINDOFF, LA ;
TURNBULL, DM .
BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY, 1994, 51 (01) :35-42
[5]   INDUCTION OF NITRIC-OXIDE SYNTHASE IN DEMYELINATING REGIONS OF MULTIPLE-SCLEROSIS BRAINS [J].
BO, L ;
DAWSON, TM ;
WESSELINGH, S ;
MORK, S ;
CHOI, S ;
KONG, PA ;
HANLEY, D ;
TRAPP, BD .
ANNALS OF NEUROLOGY, 1994, 36 (05) :778-786
[6]   Oxidative damage and metabolic dysfunction in Huntington's disease: Selective vulnerability of the basal ganglia [J].
Browne, SE ;
Bowling, AC ;
MacGarvey, U ;
Baik, MJ ;
Berger, SC ;
Muqit, MMK ;
Bird, ED ;
Beal, MF .
ANNALS OF NEUROLOGY, 1997, 41 (05) :646-653
[7]   Inflammatory central nervous system demyelination: Correlation of magnetic resonance imaging findings with lesion pathology [J].
Bruck, W ;
Bitsch, A ;
Kolenda, H ;
Bruck, Y ;
Stiefel, M ;
Lassmann, H .
ANNALS OF NEUROLOGY, 1997, 42 (05) :783-793
[8]  
Chofflon M, 1992, Eur Cytokine Netw, V3, P523
[9]   Peroxynitrite formation within the central nervous system in active multiple sclerosis [J].
Cross, AH ;
Manning, PT ;
Keeling, RM ;
Schmidt, RE ;
Misko, TP .
JOURNAL OF NEUROIMMUNOLOGY, 1998, 88 (1-2) :45-56
[10]   Evidence for the production of peroxynitrite in inflammatory CNS demyelination [J].
Cross, AH ;
Manning, PT ;
Stern, MK ;
Misko, TP .
JOURNAL OF NEUROIMMUNOLOGY, 1997, 80 (1-2) :121-130