Association of ARVCF with zonula occludens (ZO)-1 and ZO-2: Binding to PDZ-domain proteins and cell-cell adhesion regulate plasma membrane and nuclear localization of ARVCF

被引:74
作者
Kausalya, PJ [1 ]
Phua, DCY [1 ]
Hunziker, W [1 ]
机构
[1] Inst Mol & Cellular Biol, Epithelial Cell Biol Lab, Singapore 138673, Singapore
关键词
D O I
10.1091/mbc.E04-04-0350
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
ARVCF, an armadillo-repeat protein of the p120(ctn) family, associates with classical cadherins and is present in adherens junctions, but its function is poorly understood. Here, we show that ARVCF interacts via a C-terminal PDZ-binding motif with zonula occludens (ZO)-1 and ZO-2. ARVCF and ZO-1 partially colocalize in the vicinity of the apical adhesion complex in polarized epithelial Madin-Darby canine kidney cells. ARVCF, ZO-1, and E-cadherin form a complex and are recruited to sites of initial cell-cell contact in sparse cell cultures. E-cadherin binding and plasma membrane localization of ARVCF require the PDZ-binding motif. Disruption of cell-cell adhesion releases ARVCF from the plasma membrane and an increased fraction of the protein localizes to the nucleus. Nuclear localization of ARVCF also requires the PDZ-binding motif and can be mediated by the PDZ domains of ZO-2. Thus, the interaction of ARVCF with distinct PDZ-domain proteins determines its subcellular localization. Interactions with ZO-1 and ZO-2, in particular, may mediate recruitment of ARVCF to the plasma membrane and the nucleus, respectively, possibly in response to cell-cell adhesion cues.
引用
收藏
页码:5503 / 5515
页数:13
相关论文
共 54 条
[1]   Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein [J].
Adams, CL ;
Chen, YT ;
Smith, SJ ;
Nelson, WJ .
JOURNAL OF CELL BIOLOGY, 1998, 142 (04) :1105-1119
[2]  
Ando-Akatsuka Y, 1999, J CELL PHYSIOL, V179, P115, DOI 10.1002/(SICI)1097-4652(199905)179:2<115::AID-JCP1>3.0.CO
[3]  
2-T
[4]  
Angst BD, 2001, J CELL SCI, V114, P629
[5]   Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions [J].
Barker, RJ ;
Price, RL ;
Gourdie, RG .
CIRCULATION RESEARCH, 2002, 90 (03) :317-324
[6]  
Borrmann CM, 2000, ANN NY ACAD SCI, V915, P144
[7]   Molecular physiology and pathophysiology of tight junctions - I. Biogenesis of tight junctions and epithelial polarity [J].
Cereijido, M ;
Shoshani, L ;
Contreras, RG .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2000, 279 (03) :G477-G482
[8]   A core function for p120-catenin in cadherin turnover [J].
Davis, MA ;
Ireton, RC ;
Reynolds, AB .
JOURNAL OF CELL BIOLOGY, 2003, 163 (03) :525-534
[9]   Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ [J].
Doyle, DA ;
Lee, A ;
Lewis, J ;
Kim, E ;
Sheng, M ;
MacKinnon, R .
CELL, 1996, 85 (07) :1067-1076
[10]   Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac [J].
Fang, X ;
Ji, H ;
Kim, SW ;
Park, JI ;
Vaught, TG ;
Anastasiadis, PZ ;
Ciesiolka, M ;
McCrea, PD .
JOURNAL OF CELL BIOLOGY, 2004, 165 (01) :87-98