Stability analysis of Turing patterns generated by the Schnakenberg model

被引:85
作者
Iron, D [1 ]
Wei, JC
Winter, M
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Univ Stuttgart, Fachbereich Math, D-70569 Stuttgart, Germany
关键词
turing instability; symmetric N-peaked solutions; nonlocal eigenvalue problem;
D O I
10.1007/s00285-003-0258-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the following Schnakenberg model on the interval (- 1, 1): u(t) = D(1)u" - u + vu(2) in (-1, 1), v(t) = D(2)nu" + B - vu(2) in (-1, 1) u (- 1) = u' (1) v' (- 1) = v'(1) = 0, where D-1 > 0, D-2 > 0, B > 0. We rigorously show that the stability of symmetric N-peaked steady-states can be reduced to computing two matrices in terms of the diffusion coefficients D-1, D-2 and the number N of peaks. These matrices and their spectra are calculated explicitly and sharp conditions for linear stability are derived. The results are verified by some numerical simulations.
引用
收藏
页码:358 / 390
页数:33
相关论文
共 28 条
[1]  
[Anonymous], 2001, METH APPL AMAL
[2]   Unravelling the Turing bifurcation using spatially varying diffusion coefficients [J].
Benson, DL ;
Maini, PK ;
Sherratt, JA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (05) :381-417
[3]   Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach [J].
Doelman, A ;
Gardner, RA ;
Kaper, TJ .
PHYSICA D, 1998, 122 (1-4) :1-36
[4]   Large stable pulse solutions in reaction-diffusion equations [J].
Doelman, A ;
Gardner, RA ;
Kaper, TJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :443-507
[5]   Pattern formation in the one-dimensional Gray-Scott model [J].
Doelman, A ;
Kaper, TJ ;
Zegeling, PA .
NONLINEARITY, 1997, 10 (02) :523-563
[6]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[7]  
GILBART D, 1983, ELLIPTIC PARTIAL DIF
[8]   Multiple interior peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :1-27
[9]   Multiple boundary peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC ;
Winter, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01) :47-82
[10]   The stability of spike solutions to the one-dimensional Gierer-Meinhardt model [J].
Iron, D ;
Ward, MJ ;
Wei, JC .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 150 (1-2) :25-62