The new frontier of genome engineering with CRISPR-Cas9

被引:4310
作者
Doudna, Jennifer A. [1 ,2 ,3 ]
Charpentier, Emmanuelle [4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[4] Helmholtz Ctr Infect Res, Dept Regulat Infect Biol, D-38124 Braunschweig, Germany
[5] Umea Univ, Lab Mol Infect Med Sweden, Umea Ctr Microbial Res, Dept Mol Biol, S-90187 Umea, Sweden
[6] Hannover Med Sch, D-30625 Hannover, Germany
基金
瑞典研究理事会;
关键词
RNA-GUIDED CAS9; CRISPR/CAS9-MEDIATED TARGETED MUTAGENESIS; SITE-SPECIFIC CLEAVAGE; DOUBLE-STRAND BREAKS; ONE-STEP GENERATION; HOMOLOGOUS RECOMBINATION; DNA RECOGNITION; HUMAN-CELLS; INTERFERENCE COMPLEX; CRYSTAL-STRUCTURE;
D O I
10.1126/science.1258096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.
引用
收藏
页码:1077 / +
页数:10
相关论文
共 152 条
  • [1] Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    Anders, Carolin
    Niewoehner, Ole
    Duerst, Alessia
    Jinek, Martin
    [J]. NATURE, 2014, 513 (7519) : 569 - +
  • [2] Virus population dynamics and acquired virus resistance in natural microbial communities
    Andersson, Anders F.
    Banfield, Jillian F.
    [J]. SCIENCE, 2008, 320 (5879) : 1047 - 1050
  • [3] CRISPR provides acquired resistance against viruses in prokaryotes
    Barrangou, Rodolphe
    Fremaux, Christophe
    Deveau, Helene
    Richards, Melissa
    Boyaval, Patrick
    Moineau, Sylvain
    Romero, Dennis A.
    Horvath, Philippe
    [J]. SCIENCE, 2007, 315 (5819) : 1709 - 1712
  • [4] CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity
    Barrangou, Rodolphe
    Marraffini, Luciano A.
    [J]. MOLECULAR CELL, 2014, 54 (02) : 234 - 244
  • [5] CRISPR. New Horizons in Phage Resistance and Strain identification
    Barrangou, Rodolphe
    Horvath, Philippe
    [J]. ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 3, 2012, 3 : 143 - 162
  • [6] Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System
    Bassett, Andrew R.
    Tibbit, Charlotte
    Ponting, Chris P.
    Liu, Ji-Long
    [J]. CELL REPORTS, 2013, 4 (01): : 220 - 228
  • [7] Enhancing gene targeting with designed zinc finger nucleases
    Bibikova, M
    Beumer, K
    Trautman, JK
    Carroll, D
    [J]. SCIENCE, 2003, 300 (5620) : 764 - 764
  • [8] Bibikova M, 2002, GENETICS, V161, P1169
  • [9] Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    Bikard, David
    Jiang, Wenyan
    Samai, Poulami
    Hochschild, Ann
    Zhang, Feng
    Marraffini, Luciano A.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (15) : 7429 - 7437
  • [10] Biallelic Genome Modification in F0 Xenopus tropicalis Embryos Using the CRISPR/Cas System
    Blitz, Ira L.
    Biesinger, Jacob
    Xie, Xiaohui
    Cho, Ken W. Y.
    [J]. GENESIS, 2013, 51 (12): : 827 - 834