Plastic deformations in mechanically strained single-walled carbon nanotubes

被引:91
作者
Bozovic, D
Bockrath, M
Hafner, JH
Lieber, CM
Park, H
Tinkham, M
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevB.67.033407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antiferromagnetic manipulation was used to controllably stretch individual metallic single-walled carbon nanotubes (SWNT's). We have found that SWNT's can sustain elongations as great as 30% without breaking. Scanned gate microscopy and transport measurements were used to probe the effects of the mechanical strain on the SWNT electronic properties, which revealed a strain-induced increase in intra-tube electronic scattering above a threshold strain of similar to5-10%. These findings are consistent with theoretical calculations predicting the onset of plastic deformation and defect formation in carbon nanotubes.
引用
收藏
页数:4
相关论文
共 31 条
[1]   Carbon nanotubes: nanomechanics, manipulation, and electronic devices [J].
Avouris, P ;
Hertel, T ;
Martel, R ;
Schmidt, T ;
Shea, HR ;
Walkup, RE .
APPLIED SURFACE SCIENCE, 1999, 141 (3-4) :201-209
[2]   Scanned probe microscopy of electronic transport in carbon nanotubes [J].
Bachtold, A ;
Fuhrer, MS ;
Plyasunov, S ;
Forero, M ;
Anderson, EH ;
Zettl, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :6082-6085
[3]   Resonant electron scattering by defects in single-walled carbon nanotubes [J].
Bockrath, M ;
Liang, WJ ;
Bozovic, D ;
Hafner, JH ;
Lieber, CM ;
Tinkham, M ;
Park, HK .
SCIENCE, 2001, 291 (5502) :283-285
[4]   Single-electron transport in ropes of carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
McEuen, PL ;
Chopra, NG ;
Zettl, A ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 275 (5308) :1922-1925
[5]   Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes [J].
Charlier, JC ;
Ebbesen, TW ;
Lambin, P .
PHYSICAL REVIEW B, 1996, 53 (16) :11108-11113
[6]   Defects, quasibound states, and quantum conductance in metallic carbon nanotubes [J].
Choi, HJ ;
Ihm, J ;
Louie, SG ;
Cohen, ML .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2917-2920
[7]   Carbon nanotubes as molecular quantum wires [J].
Dekker, C .
PHYSICS TODAY, 1999, 52 (05) :22-28
[8]   Direct growth of single-walled carbon nanotube scanning probe microscopy tips [J].
Hafner, JH ;
Cheung, CL ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (41) :9750-9751
[9]   Catalytic growth of single-wall carbon nanotubes from metal particles [J].
Hafner, JH ;
Bronikowski, MJ ;
Azamian, BR ;
Nikolaev, P ;
Rinzler, AG ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :195-202
[10]   Manipulation of individual carbon nanotubes and their interaction with surfaces [J].
Hertel, T ;
Martel, R ;
Avouris, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (06) :910-915