Lysophosphatidic acid in neural signaling

被引:74
作者
Ye, XQ
Fukushima, N
Kingsbury, MA
Chun, J
机构
[1] Univ Calif San Diego, Sch Med, Dept Pharmacol, La Jolla, CA 92093 USA
[2] Hokkaido Univ, Grad Sch Med, Dept Biochem, Sapporo, Hokkaido 0608638, Japan
关键词
cell proliferation; LPA; LPA receptors; morphology; neural progenitors; neurons;
D O I
10.1097/00001756-200212030-00002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The physiological and pathological importance of lysophosphatidic acid (LPA) in the nervous system is underscored by its presence, as well as the expression of its receptors in neural tissues. In fact, LPA produces responses in a broad range of cell types related to the function of the nervous system. These cell types include neural cell lines, neural progenitors, primary neurons, oligodendrocytes, Schwann cells, astrocytes, microglia, and brain endothelial cells. LPA-induced cell type-specific effects include changes in cell morphology, promotion of cell proliferation and cell survival, induction of cell death, changes in ion conductance and Ca2+ mobilization, induction of pain transmission, and stimulation of vasoconstriction. These effects are mediated through a number of G protein-coupled LPA receptors that activate various downstream signaling cascades. This review provides a current summary of LPA-induced effects in neural cells in vitro or in vivo in combination with our current understanding of the signaling pathways responsible for these effects.
引用
收藏
页码:2169 / 2175
页数:7
相关论文
共 106 条
[1]   Chronic NMDA exposure accelerates development of GABAergic inhibition in the superior colliculus [J].
Aamodt, SM ;
Shi, J ;
Colonnese, MT ;
Veras, W ;
Constantine-Paton, M .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (03) :1580-1591
[2]   Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid [J].
An, SZ ;
Bleu, T ;
Hallmark, OG ;
Goetzl, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (14) :7906-7910
[3]   Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid [J].
An, SZ ;
Dickens, MA ;
Bleu, T ;
Hallmark, OG ;
Goetzl, EJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 231 (03) :619-622
[4]   Phosphorylation of collapsin response mediator protein-2 by Rho-kinase -: Evidence for two separate signaling pathways for growth cone collapse [J].
Arimura, N ;
Inagaki, N ;
Chihara, K ;
Ménager, C ;
Nakamura, N ;
Amano, M ;
Iwamatsu, A ;
Goshima, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23973-23980
[5]   STIMULATION OF PROTEIN TYROSINE PHOSPHORYLATION BY NMDA RECEPTOR ACTIVATION [J].
BADING, H ;
GREENBERG, ME .
SCIENCE, 1991, 253 (5022) :912-914
[6]   Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid [J].
Bandoh, K ;
Aoki, J ;
Hosono, H ;
Kobayashi, S ;
Kobayashi, T ;
Murakami-Murofushi, K ;
Tsujimoto, M ;
Arai, H ;
Inoue, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (39) :27776-27785
[7]   ASSEMBLY OF PHOSPHOLIPIDS INTO CELLULAR MEMBRANES - BIOSYNTHESIS, TRANSMEMBRANE MOVEMENT AND INTRACELLULAR TRANSLOCATION [J].
BISHOP, WR ;
BELL, RM .
ANNUAL REVIEW OF CELL BIOLOGY, 1988, 4 :579-610
[8]   Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation [J].
Campbell, DS ;
Holt, CE .
NEURON, 2001, 32 (06) :1013-1026
[9]   Lysophospholipid receptors: Implications for neural signaling [J].
Chun, J .
CRITICAL REVIEWS IN NEUROBIOLOGY, 1999, 13 (02) :151-168
[10]   Clonal cell lines produced by infection of neocortical neuroblasts using multiple oncogenes transduced by retroviruses [J].
Chun, J ;
Jaenisch, R .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1996, 7 (04) :304-321