Hydrogenases are proteins which metabolize the most simple of chemical compounds, molecular hydrogen, according to the reaction H-2 <--> 2H(+) + 2e(-). These enzymes are found in many microorganisms of great biotechnological interest such as methanogenic, a acetogenic, nitrogen fixing, photosynthetic or sulfate-reducing bacteria. The X-ray structure of a dimeric [NiFe] hydrogenase together with a wealth of biophysical, biochemical and genetic studies have revealed that the large subunit contains the bimetallic [Ni-Fe] active site, with biologically uncommon CO and CN ligands to the iron, whereas the small subunit contains three iron-sulfur clusters. During catalysis, the nickel atom is most likely responsible for a base-assisted heterolytic cleavage of the hydrogen molecule whereas the iron atom could be redox active. Specific channels are probably required for the transfer of the chemical reaction partners (H-2, H+ and e(-)) between the active site, deeply buried inside the protein, and the molecular surface. The generation of a functional enzyme, including the assembly of the complex catalytic center, requires maturation and involves a large number of auxiliary proteins which have been partly characterized by molecular biology.